These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Active self-healing encapsulation of vaccine antigens in PLGA microspheres. Desai KG; Schwendeman SP J Control Release; 2013 Jan; 165(1):62-74. PubMed ID: 23103983 [TBL] [Abstract][Full Text] [Related]
3. Co-encapsulated CpG oligodeoxynucleotides and ovalbumin in PLGA microparticles; an in vitro and in vivo study. San Román B; Gómez S; Irache JM; Espuelas S J Pharm Pharm Sci; 2014; 17(4):541-53. PubMed ID: 25579433 [TBL] [Abstract][Full Text] [Related]
7. Co-encapsulation of an antigen and CpG oligonucleotides into PLGA microparticles by TROMS technology. San Román B; Irache JM; Gómez S; Tsapis N; Gamazo C; Espuelas MS Eur J Pharm Biopharm; 2008 Sep; 70(1):98-108. PubMed ID: 18501572 [TBL] [Abstract][Full Text] [Related]
8. Gamma irradiation of active self-healing PLGA microspheres for efficient aqueous encapsulation of vaccine antigens. Desai KG; Kadous S; Schwendeman SP Pharm Res; 2013 Jul; 30(7):1768-78. PubMed ID: 23515830 [TBL] [Abstract][Full Text] [Related]
9. Cationic polymer modified PLGA nanoparticles encapsulating Alhagi honey polysaccharides as a vaccine delivery system for ovalbumin to improve immune responses. Wusiman A; Gu P; Liu Z; Xu S; Zhang Y; Hu Y; Liu J; Wang D; Huang X Int J Nanomedicine; 2019; 14():3221-3234. PubMed ID: 31123399 [No Abstract] [Full Text] [Related]
10. Rational Design of PLGA Nanoparticle Vaccine Delivery Systems To Improve Immune Responses. Gu P; Wusiman A; Zhang Y; Liu Z; Bo R; Hu Y; Liu J; Wang D Mol Pharm; 2019 Dec; 16(12):5000-5012. PubMed ID: 31621331 [TBL] [Abstract][Full Text] [Related]
11. Time course study of the antigen-specific immune response to a PLGA microparticle vaccine formulation. Wang Q; Tan MT; Keegan BP; Barry MA; Heffernan MJ Biomaterials; 2014 Sep; 35(29):8385-93. PubMed ID: 24986256 [TBL] [Abstract][Full Text] [Related]
12. A biomimetic approach to active self-microencapsulation of proteins in PLGA. Shah RB; Schwendeman SP J Control Release; 2014 Dec; 196():60-70. PubMed ID: 25219750 [TBL] [Abstract][Full Text] [Related]
13. The characterization of paclitaxel-loaded microspheres manufactured from blends of poly(lactic-co-glycolic acid) (PLGA) and low molecular weight diblock copolymers. Jackson JK; Hung T; Letchford K; Burt HM Int J Pharm; 2007 Sep; 342(1-2):6-17. PubMed ID: 17555895 [TBL] [Abstract][Full Text] [Related]
14. Lipid core peptide/poly(lactic-co-glycolic acid) as a highly potent intranasal vaccine delivery system against Group A streptococcus. Marasini N; Khalil ZG; Giddam AK; Ghaffar KA; Hussein WM; Capon RJ; Batzloff MR; Good MF; Skwarczynski M; Toth I Int J Pharm; 2016 Nov; 513(1-2):410-420. PubMed ID: 27659862 [TBL] [Abstract][Full Text] [Related]
15. Angelica sinensis polysaccharide encapsulated into PLGA nanoparticles as a vaccine delivery and adjuvant system for ovalbumin to promote immune responses. Gu P; Liu Z; Sun Y; Ou N; Hu Y; Liu J; Wu Y; Wang D Int J Pharm; 2019 Jan; 554():72-80. PubMed ID: 30399435 [TBL] [Abstract][Full Text] [Related]
16. Pharmaceutical and immunological evaluation of a single-shot hepatitis B vaccine formulated with PLGA microspheres. Shi L; Caulfield MJ; Chern RT; Wilson RA; Sanyal G; Volkin DB J Pharm Sci; 2002 Apr; 91(4):1019-35. PubMed ID: 11948541 [TBL] [Abstract][Full Text] [Related]
17. Encapsulation of antigen in poly(D,L-lactide-co-glycolide) microspheres protects from harmful effects of γ-irradiation as assessed in mice. Mohanan D; Gander B; Kündig TM; Johansen P Eur J Pharm Biopharm; 2012 Feb; 80(2):274-81. PubMed ID: 22024408 [TBL] [Abstract][Full Text] [Related]
18. Diaminosulfide based polymer microparticles as cancer vaccine delivery systems. Geary SM; Hu Q; Joshi VB; Bowden NB; Salem AK J Control Release; 2015 Dec; 220(Pt B):682-90. PubMed ID: 26359124 [TBL] [Abstract][Full Text] [Related]