BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 28726681)

  • 1. A novel cylindrical microwell featuring inverted-pyramidal opening for efficient cell spheroid formation without cell loss.
    Cha JM; Park H; Shin EK; Sung JH; Kim O; Jung W; Bang OY; Kim J
    Biofabrication; 2017 Aug; 9(3):035006. PubMed ID: 28726681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of omega-shaped microwell arrays for a spheroid culture platform using pins of a commercial CPU to minimize cell loss and crosstalk.
    Kim K; Kim SH; Lee GH; Park JY
    Biofabrication; 2018 Aug; 10(4):045003. PubMed ID: 30074487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermoresponsive poly(N-isopropylacrylamide) hydrogel substrates micropatterned with poly(ethylene glycol) hydrogel for adipose mesenchymal stem cell spheroid formation and retrieval.
    Kim G; Jung Y; Cho K; Lee HJ; Koh WG
    Mater Sci Eng C Mater Biol Appl; 2020 Oct; 115():111128. PubMed ID: 32600725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and fabrication of a liver-on-a-chip platform for convenient, highly efficient, and safe in situ perfusion culture of 3D hepatic spheroids.
    Ma LD; Wang YT; Wang JR; Wu JL; Meng XS; Hu P; Mu X; Liang QL; Luo GA
    Lab Chip; 2018 Aug; 18(17):2547-2562. PubMed ID: 30019731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional spheroid organization of human salivary gland cells cultured on hydrogel-micropatterned nanofibrous microwells.
    Shin HS; Kook YM; Hong HJ; Kim YM; Koh WG; Lim JY
    Acta Biomater; 2016 Nov; 45():121-132. PubMed ID: 27592814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of size-controllable human mesenchymal stromal cell spheroids from micro-scaled cell sheets.
    Byun H; Bin Lee Y; Kim EM; Shin H
    Biofabrication; 2019 Jun; 11(3):035025. PubMed ID: 31096204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micropatterned culture of HepG2 spheroids using microwell chip with honeycomb-patterned polymer film.
    Yamazaki H; Gotou S; Ito K; Kohashi S; Goto Y; Yoshiura Y; Sakai Y; Yabu H; Shimomura M; Nakazawa K
    J Biosci Bioeng; 2014 Oct; 118(4):455-60. PubMed ID: 24742630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Networked concave microwell arrays for constructing 3D cell spheroids.
    Lee GH; Lee JS; Lee GH; Joung WY; Kim SH; Lee SH; Park JY; Kim DH
    Biofabrication; 2017 Nov; 10(1):015001. PubMed ID: 29190216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium Peroxide-Containing Polydimethylsiloxane-Based Microwells for Inhibiting Cell Death in Spheroids through Improved Oxygen Supply.
    Mizukami Y; Takahashi Y; Shimizu K; Konishi S; Takakura Y; Nishikawa M
    Biol Pharm Bull; 2021; 44(10):1458-1464. PubMed ID: 34602554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lotus seedpod-inspired hydrogels as an all-in-one platform for culture and delivery of stem cell spheroids.
    Kim SJ; Park J; Kim EM; Choi JJ; Kim HN; Chin IL; Choi YS; Moon SH; Shin H
    Biomaterials; 2019 Dec; 225():119534. PubMed ID: 31590118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of agarose concave petridish for 3D-culture microarray method for spheroids formation of hepatic cells.
    Zhang B; Li Y; Wang G; Jia Z; Li H; Peng Q; Gao Y
    J Mater Sci Mater Med; 2018 Apr; 29(5):49. PubMed ID: 29675647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced micromachining of concave microwells for long term on-chip culture of multicellular tumor spheroids.
    Liu T; Chien CC; Parkinson L; Thierry B
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8090-7. PubMed ID: 24773458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A deep conical agarose microwell array for adhesion independent three-dimensional cell culture and dynamic volume measurement.
    Thomsen AR; Aldrian C; Bronsert P; Thomann Y; Nanko N; Melin N; Rücker G; Follo M; Grosu AL; Niedermann G; Layer PG; Heselich A; Lund PG
    Lab Chip; 2017 Dec; 18(1):179-189. PubMed ID: 29211089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and characterization of size-controlled glioma spheroids using agarose hydrogel microwells.
    Mirab F; Kang YJ; Majd S
    PLoS One; 2019; 14(1):e0211078. PubMed ID: 30677075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypergravity-induced multicellular spheroid generation with different morphological patterns precisely controlled on a centrifugal microfluidic platform.
    Park J; Lee GH; Yull Park J; Lee JC; Kim HC
    Biofabrication; 2017 Nov; 9(4):045006. PubMed ID: 29045238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Paired Bead and Magnet Array for Molding Microwells with Variable Concave Geometries.
    Lee GH; Suh Y; Park JY
    J Vis Exp; 2018 Jan; (131):. PubMed ID: 29443026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of large numbers of size-controlled tumor spheroids using microwell plates.
    Razian G; Yu Y; Ungrin M
    J Vis Exp; 2013 Nov; (81):e50665. PubMed ID: 24300192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The microwell-mesh: A novel device and protocol for the high throughput manufacturing of cartilage microtissues.
    Futrega K; Palmer JS; Kinney M; Lott WB; Ungrin MD; Zandstra PW; Doran MR
    Biomaterials; 2015 Sep; 62():1-12. PubMed ID: 26010218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid spheroid clearing on a microfluidic chip.
    Silva Santisteban T; Rabajania O; Kalinina I; Robinson S; Meier M
    Lab Chip; 2017 Dec; 18(1):153-161. PubMed ID: 29192297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced oxygen permeability in membrane-bottomed concave microwells for the formation of pancreatic islet spheroids.
    Lee G; Jun Y; Jang H; Yoon J; Lee J; Hong M; Chung S; Kim DH; Lee S
    Acta Biomater; 2018 Jan; 65():185-196. PubMed ID: 29101017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.