These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 28726686)

  • 1. Dual mode operation, highly selective nanohole array-based plasmonic colour filters.
    Mahani FF; Mokhtari A; Mehran M
    Nanotechnology; 2017 Sep; 28(38):385203. PubMed ID: 28726686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polarization-tuned Dynamic Color Filters Incorporating a Dielectric-loaded Aluminum Nanowire Array.
    Raj Shrestha V; Lee SS; Kim ES; Choi DY
    Sci Rep; 2015 Jul; 5():12450. PubMed ID: 26211625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of relative nanohole position on colour purity of ultrathin plasmonic subtractive colour filters.
    Sun LB; Hu XL; Zeng B; Wang LS; Yang SM; Tai RZ; Fecht HJ; Zhang DX; Jiang JZ
    Nanotechnology; 2015 Jul; 26(30):305204. PubMed ID: 26160906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters.
    Zeng B; Gao Y; Bartoli FJ
    Sci Rep; 2013 Oct; 3():2840. PubMed ID: 24100869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array.
    Shrestha VR; Lee SS; Kim ES; Choi DY
    Nano Lett; 2014 Nov; 14(11):6672-8. PubMed ID: 25347210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional plasmonic stereoscopic prints in full colour.
    Goh XM; Zheng Y; Tan SJ; Zhang L; Kumar K; Qiu CW; Yang JK
    Nat Commun; 2014 Nov; 5():5361. PubMed ID: 25369035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polarization independent subtractive color printing based on ultrathin hexagonal nanodisk-nanohole hybrid structure arrays.
    Zhao J; Yu X; Yang X; Xiang Q; Duan H; Yu Y
    Opt Express; 2017 Sep; 25(19):23137-23145. PubMed ID: 29041617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subtractive Color Filters Based on a Silicon-Aluminum Hybrid-Nanodisk Metasurface Enabling Enhanced Color Purity.
    Yue W; Gao S; Lee SS; Kim ES; Choi DY
    Sci Rep; 2016 Jul; 6():29756. PubMed ID: 27407024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Narrowband multispectral filter set for visible band.
    Walls K; Chen Q; Grant J; Collins S; Cumming DR; Drysdale TD
    Opt Express; 2012 Sep; 20(20):21917-23. PubMed ID: 23037341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual Color Plasmonic Pixels Create a Polarization Controlled Nano Color Palette.
    Li Z; Clark AW; Cooper JM
    ACS Nano; 2016 Jan; 10(1):492-8. PubMed ID: 26631346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic Colour Filters Based on Coaxial Holes in Aluminium.
    Rajasekharan Unnithan R; Sun M; He X; Balaur E; Minovich A; Neshev DN; Skafidas E; Roberts A
    Materials (Basel); 2017 Apr; 10(4):. PubMed ID: 28772742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyper-selective plasmonic color filters.
    Fleischman D; Sweatlock LA; Murakami H; Atwater H
    Opt Express; 2017 Oct; 25(22):27386-27395. PubMed ID: 29092212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic color filters for CMOS image sensor applications.
    Yokogawa S; Burgos SP; Atwater HA
    Nano Lett; 2012 Aug; 12(8):4349-54. PubMed ID: 22799751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic micropipe spectral filters in mid-infrared.
    Xu J; Wang A; Dan Y
    Opt Lett; 2019 Sep; 44(18):4479-4482. PubMed ID: 31517911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic Colour Printing by Light Trapping in Two-Metal Nanostructures.
    Wilson K; Marocico CA; Pedrueza-Villalmanzo E; Smith C; Hrelescu C; Bradley AL
    Nanomaterials (Basel); 2019 Jul; 9(7):. PubMed ID: 31266205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-Area Fabrication of Complex Nanohole Arrays with Highly Tunable Plasmonic Properties.
    Wang Y; Chong HB; Zhang Z; Zhao Y
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37435-37443. PubMed ID: 32698576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial optical crosstalk in CMOS image sensors integrated with plasmonic color filters.
    Yu Y; Chen Q; Wen L; Hu X; Zhang HF
    Opt Express; 2015 Aug; 23(17):21994-2003. PubMed ID: 26368174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wide-gamut plasmonic color filters using a complementary design method.
    Lee SU; Ju BK
    Sci Rep; 2017 Jan; 7():40649. PubMed ID: 28084453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution plasmonic structural colors from nanohole arrays with bottom metal disks.
    Lu BR; Xu C; Liao J; Liu J; Chen Y
    Opt Lett; 2016 Apr; 41(7):1400-3. PubMed ID: 27192246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic color filters fabricated via oxide-based nanotransfer printing.
    Hwang SH; Kim MJ; Jeon S; Shin B; Jeong JH
    Nanotechnology; 2018 Oct; 29(41):415301. PubMed ID: 30010087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.