These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 28726753)
1. Antimicrobial Properties of Selected Copper Alloys on Staphylococcus aureus and Escherichia coli in Different Simulations of Environmental Conditions: With vs. without Organic Contamination. Różańska A; Chmielarczyk A; Romaniszyn D; Sroka-Oleksiak A; Bulanda M; Walkowicz M; Osuch P; Knych T Int J Environ Res Public Health; 2017 Jul; 14(7):. PubMed ID: 28726753 [No Abstract] [Full Text] [Related]
3. Antimicrobial efficacy and compatibility of solid copper alloys with chemical disinfectants. Steinhauer K; Meyer S; Pfannebecker J; Teckemeyer K; Ockenfeld K; Weber K; Becker B PLoS One; 2018; 13(8):e0200748. PubMed ID: 30096209 [TBL] [Abstract][Full Text] [Related]
4. Antimicrobial effect of copper alloys on Różańska A; Chmielarczyk A; Romaniszyn D; Majka G; Bulanda M Antimicrob Resist Infect Control; 2018; 7():10. PubMed ID: 29387344 [TBL] [Abstract][Full Text] [Related]
5. Pure and Oxidized Copper Materials as Potential Antimicrobial Surfaces for Spaceflight Activities. Hahn C; Hans M; Hein C; Mancinelli RL; Mücklich F; Wirth R; Rettberg P; Hellweg CE; Moeller R Astrobiology; 2017 Dec; 17(12):1183-1191. PubMed ID: 29116818 [TBL] [Abstract][Full Text] [Related]
6. Influence of chlorides and phosphates on the antiadhesive, antibacterial, and electrochemical properties of an electroplated copper-silver alloy. Ciacotich N; Kilstrup M; Møller P; Gram L Biointerphases; 2019 Apr; 14(2):021005. PubMed ID: 30966754 [TBL] [Abstract][Full Text] [Related]
7. Antimicrobial properties of ternary eutectic aluminum alloys. Hahn C; Hans M; Hein C; Dennstedt A; Mücklich F; Rettberg P; Hellweg CE; Leichert LI; Rensing C; Moeller R Biometals; 2018 Oct; 31(5):759-770. PubMed ID: 29946993 [TBL] [Abstract][Full Text] [Related]
8. Use of copper cast alloys to control Escherichia coli O157 cross-contamination during food processing. Noyce JO; Michels H; Keevil CW Appl Environ Microbiol; 2006 Jun; 72(6):4239-44. PubMed ID: 16751537 [TBL] [Abstract][Full Text] [Related]
9. Mechanism of copper surface toxicity in Escherichia coli O157:H7 and Salmonella involves immediate membrane depolarization followed by slower rate of DNA destruction which differs from that observed for Gram-positive bacteria. Warnes SL; Caves V; Keevil CW Environ Microbiol; 2012 Jul; 14(7):1730-43. PubMed ID: 22176893 [TBL] [Abstract][Full Text] [Related]
10. Compounds in a particular production lot of tryptic soy broth inhibit Staphylococcus aureus cell growth. Ishii M; Matsumoto Y; Sekimizu K Drug Discov Ther; 2015 Jun; 9(3):178-83. PubMed ID: 26193939 [TBL] [Abstract][Full Text] [Related]
11. [Application of copper bactericidal properties in medical practice]. Prado J V; Vidal A R; Durán T C Rev Med Chil; 2012 Oct; 140(10):1325-32. PubMed ID: 23559292 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of new in vitro efficacy test for antimicrobial surface activity reflecting UK hospital conditions. Ojeil M; Jermann C; Holah J; Denyer SP; Maillard JY J Hosp Infect; 2013 Dec; 85(4):274-81. PubMed ID: 24091310 [TBL] [Abstract][Full Text] [Related]
13. Impact of a dry inoculum deposition on the efficacy of copper-based antimicrobial surfaces. McDonald M; Wesgate R; Rubiano M; Holah J; Denyer SP; Jermann C; Maillard JY J Hosp Infect; 2020 Nov; 106(3):465-472. PubMed ID: 32810570 [TBL] [Abstract][Full Text] [Related]
14. Antimicrobial Activity of Copper Alloys Against Invasive Multidrug-Resistant Nosocomial Pathogens. Eser OK; Ergin A; Hascelik G Curr Microbiol; 2015 Aug; 71(2):291-5. PubMed ID: 26044991 [TBL] [Abstract][Full Text] [Related]
15. Antimicrobial activity of X zeolite exchanged with Cu Yao G; Lei J; Zhang W; Yu C; Sun Z; Zheng S; Komarneni S Environ Sci Pollut Res Int; 2019 Jan; 26(3):2782-2793. PubMed ID: 30484057 [TBL] [Abstract][Full Text] [Related]
16. Effects of surface contamination and cleaning with hypochlorite wipes on the antibacterial activity of copper-alloyed antibacterial stainless steel. Kawakami H; Hayashi T; Nishikubo H; Morikawa A; Suzuki S; Sato Y; Kikuchi Y Biocontrol Sci; 2014; 19(2):73-8. PubMed ID: 24975410 [TBL] [Abstract][Full Text] [Related]
17. [In vitro evaluation of antibacterial activity and cytocompatibility of antibacterial stainless steel containing copper]. Guan J; Guo L; Fu Y; Chai H Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Apr; 30(2):333-7. PubMed ID: 23858758 [TBL] [Abstract][Full Text] [Related]
18. In vitro evaluation of antimicrobial efficacy and durability of three copper surfaces used in healthcare. Bryce EA; Velapatino B; Akbari Khorami H; Donnelly-Pierce T; Wong T; Dixon R; Asselin E Biointerphases; 2020 Feb; 15(1):011005. PubMed ID: 32041413 [TBL] [Abstract][Full Text] [Related]
19. Synergistic bactericidal action of phytic acid and sodium chloride against Escherichia coli O157:H7 cells protected by a biofilm. Kim NH; Rhee MS Int J Food Microbiol; 2016 Jun; 227():17-21. PubMed ID: 27043385 [TBL] [Abstract][Full Text] [Related]
20. Development of silver-containing austenite antibacterial stainless steels for biomedical applications part I: microstructure characteristics, mechanical properties and antibacterial mechanisms. Huang CF; Chiang HJ; Lan WC; Chou HH; Ou KL; Yu CH Biofouling; 2011 May; 27(5):449-57. PubMed ID: 21598123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]