These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 28726912)

  • 21. Assembly of multiple cell gradients directed by three-dimensional microfluidic channels.
    Li Y; Feng X; Wang Y; Du W; Chen P; Liu C; Liu BF
    Lab Chip; 2015 Aug; 15(15):3203-10. PubMed ID: 26126652
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Webcam-based flow cytometer using wide-field imaging for low cell number detection at high throughput.
    Balsam J; Bruck HA; Rasooly A
    Analyst; 2014 Sep; 139(17):4322-9. PubMed ID: 24995370
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-throughput methods to define complex stem cell niches.
    Kobel S; Lutolf M
    Biotechniques; 2010 Apr; 48(4):ix-xxii. PubMed ID: 20569203
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Facile and rapid generation of 3D chemical gradients within hydrogels for high-throughput drug screening applications.
    Ahadian S; Ramón-Azcón J; Estili M; Obregón R; Shiku H; Matsue T
    Biosens Bioelectron; 2014 Sep; 59():166-73. PubMed ID: 24727602
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-throughput dielectrophoretic manipulation of bioparticles within fluids through biocompatible three-dimensional microelectrode array.
    Ma W; Shi T; Tang Z; Liu S; Malik R; Zhang L
    Electrophoresis; 2011 Feb; 32(5):494-505. PubMed ID: 21298672
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Arrays of 3D double-network hydrogels for the high-throughput discovery of materials with enhanced physical and biological properties.
    Duffy C; Venturato A; Callanan A; Lilienkampf A; Bradley M
    Acta Biomater; 2016 Apr; 34():104-112. PubMed ID: 26712601
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfluidic Strategies for Understanding the Mechanics of Cells and Cell-Mimetic Systems.
    Dahl JB; Lin JM; Muller SJ; Kumar S
    Annu Rev Chem Biomol Eng; 2015; 6():293-317. PubMed ID: 26134738
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microprinting of liver micro-organ for drug metabolism study.
    Chang RC; Emami K; Jeevarajan A; Wu H; Sun W
    Methods Mol Biol; 2011; 671():219-38. PubMed ID: 20967633
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-dimensional microfiber devices that mimic physiological environments to probe cell mechanics and signaling.
    Ruder WC; Pratt ED; Bakhru S; Sitti M; Zappe S; Cheng CM; Antaki JF; LeDuc PR
    Lab Chip; 2012 Apr; 12(10):1775-9. PubMed ID: 22374375
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of a novel multi-layer microfluidic device towards characterization of drug metabolism and cytotoxicity for drug screening.
    Wu Q; Gao D; Wei J; Jin F; Xie W; Jiang Y; Liu H
    Chem Commun (Camb); 2014 Mar; 50(21):2762-4. PubMed ID: 24481240
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-throughput deterministic single-cell encapsulation and droplet pairing, fusion, and shrinkage in a single microfluidic device.
    Schoeman RM; Kemna EW; Wolbers F; van den Berg A
    Electrophoresis; 2014 Feb; 35(2-3):385-92. PubMed ID: 23856757
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rapid, high resolution screening of biomaterial hydrogelators by μ2rheology.
    Schultz KM; Bayles AV; Baldwin AD; Kiick KL; Furst EM
    Biomacromolecules; 2011 Dec; 12(12):4178-82. PubMed ID: 22023267
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High throughput cell cycle analysis using microfluidic image cytometry (μFIC).
    Yoo HJ; Park J; Yoon TH
    Cytometry A; 2013 Apr; 83(4):356-62. PubMed ID: 23418122
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-Throughput Assessment of Mechanistic Toxicity of Chemicals in Miniaturized 3D Cell Culture.
    Joshi P; Kang SY; Datar A; Lee MY
    Curr Protoc Toxicol; 2019 Feb; 79(1):e66. PubMed ID: 30387930
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-throughput time-correlated single photon counting.
    Léonard J; Dumas N; Caussé JP; Maillot S; Giannakopoulou N; Barre S; Uhring W
    Lab Chip; 2014 Nov; 14(22):4338-43. PubMed ID: 25178818
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel device to concurrently assess leukocyte extravasation and interstitial migration within a defined 3D environment.
    Molteni R; Bianchi E; Patete P; Fabbri M; Baroni G; Dubini G; Pardi R
    Lab Chip; 2015 Jan; 15(1):195-207. PubMed ID: 25337693
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single cell-laden protease-sensitive microniches for long-term culture in 3D.
    Lienemann PS; Rossow T; Mao AS; Vallmajo-Martin Q; Ehrbar M; Mooney DJ
    Lab Chip; 2017 Feb; 17(4):727-737. PubMed ID: 28154867
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hot topic: In vitro imaging. Editorial.
    Tang F; Xu JJ
    Comb Chem High Throughput Screen; 2009 Nov; 12(9):825-6. PubMed ID: 19938326
    [No Abstract]   [Full Text] [Related]  

  • 39. Volume cytometry: microfluidic sensor for high-throughput screening in real time.
    Ateya DA; Sachs F; Gottlieb PA; Besch S; Hua SZ
    Anal Chem; 2005 Mar; 77(5):1290-4. PubMed ID: 15732909
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A microfluidic platform for the high-throughput study of pathological cardiac hypertrophy.
    Parsa H; Wang BZ; Vunjak-Novakovic G
    Lab Chip; 2017 Sep; 17(19):3264-3271. PubMed ID: 28832065
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.