BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 28726917)

  • 1. Engineering micromyocardium to delineate cellular and extracellular regulation of myocardial tissue contractility.
    Ariyasinghe NR; Reck CH; Viscio AA; Petersen AP; Lyra-Leite DM; Cho N; McCain ML
    Integr Biol (Camb); 2017 Sep; 9(9):730-741. PubMed ID: 28726917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acellular cardiac extracellular matrix as a scaffold for tissue engineering: in vitro cell support, remodeling, and biocompatibility.
    Eitan Y; Sarig U; Dahan N; Machluf M
    Tissue Eng Part C Methods; 2010 Aug; 16(4):671-83. PubMed ID: 19780649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reprogramming cardiomyocyte mechanosensing by crosstalk between integrins and hyaluronic acid receptors.
    Chopra A; Lin V; McCollough A; Atzet S; Prestwich GD; Wechsler AS; Murray ME; Oake SA; Kresh JY; Janmey PA
    J Biomech; 2012 Mar; 45(5):824-31. PubMed ID: 22196970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of matrix (an)isotropy on cardiomyocyte contraction in engineered cardiac microtissues.
    van Spreeuwel AC; Bax NA; Bastiaens AJ; Foolen J; Loerakker S; Borochin M; van der Schaft DW; Chen CS; Baaijens FP; Bouten CV
    Integr Biol (Camb); 2014 Apr; 6(4):422-9. PubMed ID: 24549279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward improved myocardial maturity in an organ-on-chip platform with immature cardiac myocytes.
    Sheehy SP; Grosberg A; Qin P; Behm DJ; Ferrier JP; Eagleson MA; Nesmith AP; Krull D; Falls JG; Campbell PH; McCain ML; Willette RN; Hu E; Parker KK
    Exp Biol Med (Maywood); 2017 Nov; 242(17):1643-1656. PubMed ID: 28343439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Matrix elasticity regulates the optimal cardiac myocyte shape for contractility.
    McCain ML; Yuan H; Pasqualini FS; Campbell PH; Parker KK
    Am J Physiol Heart Circ Physiol; 2014 Jun; 306(11):H1525-39. PubMed ID: 24682394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering Shape-Controlled Microtissues on Compliant Hydrogels with Tunable Rigidity and Extracellular Matrix Ligands.
    Rexius-Hall ML; Ariyasinghe NR; McCain ML
    Methods Mol Biol; 2021; 2258():57-72. PubMed ID: 33340354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beta 1 integrin binding plays a role in the constant traction force generation in response to varying stiffness for cells grown on mature cardiac extracellular matrix.
    Gershlak JR; Black LD
    Exp Cell Res; 2015 Jan; 330(2):311-324. PubMed ID: 25220424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered heart slices for electrophysiological and contractile studies.
    Blazeski A; Kostecki GM; Tung L
    Biomaterials; 2015 Jul; 55():119-28. PubMed ID: 25934457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micromechanical regulation in cardiac myocytes and fibroblasts: implications for tissue remodeling.
    Curtis MW; Russell B
    Pflugers Arch; 2011 Jul; 462(1):105-17. PubMed ID: 21308471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering 3D bio-artificial heart muscle: the acellular ventricular extracellular matrix model.
    Patel NM; Tao ZW; Mohamed MA; Hogan MK; Gutierrez L; Birla RK
    ASAIO J; 2015; 61(1):61-70. PubMed ID: 25248038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age-dependent functional crosstalk between cardiac fibroblasts and cardiomyocytes in a 3D engineered cardiac tissue.
    Li Y; Asfour H; Bursac N
    Acta Biomater; 2017 Jun; 55():120-130. PubMed ID: 28455218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic culture yields engineered myocardium with near-adult functional output.
    Jackman CP; Carlson AL; Bursac N
    Biomaterials; 2016 Dec; 111():66-79. PubMed ID: 27723557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. I-Wire Heart-on-a-Chip II: Biomechanical analysis of contractile, three-dimensional cardiomyocyte tissue constructs.
    Schroer AK; Shotwell MS; Sidorov VY; Wikswo JP; Merryman WD
    Acta Biomater; 2017 Jan; 48():79-87. PubMed ID: 27818306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical, contractile and calcium handling properties of neonatal cardiac myocytes cultured on different matrices.
    Bick RJ; Snuggs MB; Poindexter BJ; Buja LM; Van Winkle WB
    Cell Adhes Commun; 1998; 6(4):301-10. PubMed ID: 9865464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Force characteristics of in vivo tissue-engineered myocardial constructs using varying cell seeding densities.
    Birla R; Dhawan V; Huang YC; Lytle I; Tiranathanagul K; Brown D
    Artif Organs; 2008 Sep; 32(9):684-91. PubMed ID: 18684210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Traction force microscopy of engineered cardiac tissues.
    Pasqualini FS; Agarwal A; O'Connor BB; Liu Q; Sheehy SP; Parker KK
    PLoS One; 2018; 13(3):e0194706. PubMed ID: 29590169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anisotropic engineered heart tissue made from laser-cut decellularized myocardium.
    Schwan J; Kwaczala AT; Ryan TJ; Bartulos O; Ren Y; Sewanan LR; Morris AH; Jacoby DL; Qyang Y; Campbell SG
    Sci Rep; 2016 Aug; 6():32068. PubMed ID: 27572147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Murine and human pluripotent stem cell-derived cardiac bodies form contractile myocardial tissue in vitro.
    Kensah G; Roa Lara A; Dahlmann J; Zweigerdt R; Schwanke K; Hegermann J; Skvorc D; Gawol A; Azizian A; Wagner S; Maier LS; Krause A; Dräger G; Ochs M; Haverich A; Gruh I; Martin U
    Eur Heart J; 2013 Apr; 34(15):1134-46. PubMed ID: 23103664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of extracellular matrix signaling cues in modulating cell fate commitment for cardiovascular tissue engineering.
    Nakayama KH; Hou L; Huang NF
    Adv Healthc Mater; 2014 May; 3(5):628-41. PubMed ID: 24443420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.