BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 28726927)

  • 1. Custom 3D printer and resin for 18 μm × 20 μm microfluidic flow channels.
    Gong H; Bickham BP; Woolley AT; Nordin GP
    Lab Chip; 2017 Aug; 17(17):2899-2909. PubMed ID: 28726927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components.
    Ahmed I; Sullivan K; Priye A
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical Approach to Resin Formulation for 3D Printed Microfluidics.
    Gong H; Beauchamp M; Perry S; Woolley AT; Nordin GP
    RSC Adv; 2015 Dec; 5(129):106621-106632. PubMed ID: 26744624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing Microfluidic Performance of Three-Dimensional (3D) Printing Platforms.
    Macdonald NP; Cabot JM; Smejkal P; Guijt RM; Paull B; Breadmore MC
    Anal Chem; 2017 Apr; 89(7):3858-3866. PubMed ID: 28281349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation and comparison of resin materials in transparent DLP-printing for application in cell culture and organs-on-a-chip.
    Fritschen A; Bell AK; Königstein I; Stühn L; Stark RW; Blaeser A
    Biomater Sci; 2022 Apr; 10(8):1981-1994. PubMed ID: 35262097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High density 3D printed microfluidic valves, pumps, and multiplexers.
    Gong H; Woolley AT; Nordin GP
    Lab Chip; 2016 Jul; 16(13):2450-8. PubMed ID: 27242064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PolyJet 3D-Printed Enclosed Microfluidic Channels without Photocurable Supports.
    Castiaux AD; Pinger CW; Hayter EA; Bunn ME; Martin RS; Spence DM
    Anal Chem; 2019 May; 91(10):6910-6917. PubMed ID: 31035747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate and rapid 3D printing of microfluidic devices using wavelength selection on a DLP printer.
    van der Linden PJEM; Popov AM; Pontoni D
    Lab Chip; 2020 Nov; 20(22):4128-4140. PubMed ID: 33057528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-resolution low-cost LCD 3D printing for microfluidics and organ-on-a-chip devices.
    Shafique H; Karamzadeh V; Kim G; Shen ML; Morocz Y; Sohrabi-Kashani A; Juncker D
    Lab Chip; 2024 May; 24(10):2774-2790. PubMed ID: 38682609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Negligible-cost microfluidic device fabrication using 3D-printed interconnecting channel scaffolds.
    Felton H; Hughes R; Diaz-Gaxiola A
    PLoS One; 2021; 16(2):e0245206. PubMed ID: 33534849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid Micromolding of Sub-100 µm Microfluidic Channels Using an 8K Stereolithographic Resin 3D Printer.
    Vedhanayagam A; Golfetto M; Ram JL; Basu AS
    Micromachines (Basel); 2023 Jul; 14(8):. PubMed ID: 37630056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applied tutorial for the design and fabrication of biomicrofluidic devices by resin 3D printing.
    Musgrove HB; Catterton MA; Pompano RR
    Anal Chim Acta; 2022 May; 1209():339842. PubMed ID: 35569850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developing Microfluidic Sensing Devices Using 3D Printing.
    Rusling JF
    ACS Sens; 2018 Mar; 3(3):522-526. PubMed ID: 29490458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D Printed Microfluidics.
    Nielsen AV; Beauchamp MJ; Nordin GP; Woolley AT
    Annu Rev Anal Chem (Palo Alto Calif); 2020 Jun; 13(1):45-65. PubMed ID: 31821017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Moving from millifluidic to truly microfluidic sub-100-μm cross-section 3D printed devices.
    Beauchamp MJ; Nordin GP; Woolley AT
    Anal Bioanal Chem; 2017 Jul; 409(18):4311-4319. PubMed ID: 28612085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Printing of Individualized Microfluidic Chips with DLP-Based Printer.
    Qiu J; Li J; Guo Z; Zhang Y; Nie B; Qi G; Zhang X; Zhang J; Wei R
    Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding and improving FDM 3D printing to fabricate high-resolution and optically transparent microfluidic devices.
    Quero RF; Domingos da Silveira G; Fracassi da Silva JA; Jesus DP
    Lab Chip; 2021 Sep; 21(19):3715-3729. PubMed ID: 34355724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D printing-enabled uniform temperature distributions in microfluidic devices.
    Sanchez D; Hawkins G; Hinnen HS; Day A; Woolley AT; Nordin GP; Munro T
    Lab Chip; 2022 Nov; 22(22):4393-4408. PubMed ID: 36282069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-situ transfer vat photopolymerization for transparent microfluidic device fabrication.
    Xu Y; Qi F; Mao H; Li S; Zhu Y; Gong J; Wang L; Malmstadt N; Chen Y
    Nat Commun; 2022 Feb; 13(1):918. PubMed ID: 35177598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Digital light processing 3D printing for microfluidic chips with enhanced resolution via dosing- and zoning-controlled vat photopolymerization.
    Luo Z; Zhang H; Chen R; Li H; Cheng F; Zhang L; Liu J; Kong T; Zhang Y; Wang H
    Microsyst Nanoeng; 2023; 9():103. PubMed ID: 37593440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.