BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 28726941)

  • 1. Superlubricity of a graphene/MoS
    Wang L; Zhou X; Ma T; Liu D; Gao L; Li X; Zhang J; Hu Y; Wang H; Dai Y; Luo J
    Nanoscale; 2017 Aug; 9(30):10846-10853. PubMed ID: 28726941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction of interfacial friction in commensurate graphene/h-BN heterostructures by surface functionalization.
    Guo Y; Qiu J; Guo W
    Nanoscale; 2016 Jan; 8(1):575-80. PubMed ID: 26645099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First-principles theory of atomic-scale friction explored by an intuitive charge density fluctuation surface.
    Zhang B; Cheng Z; Zhang G; Lu Z; Ma F; Zhou F
    Phys Chem Chem Phys; 2019 Nov; 21(44):24565-24571. PubMed ID: 31663565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Temperature Superlubricity in MoS
    Long Y; Wang X; Tan W; Li B; Li J; Deng W; Li X; Guo W; Yin J
    Nano Lett; 2024 Jun; 24(25):7572-7577. PubMed ID: 38860969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superlubricity of two-dimensional fluorographene/MoS2 heterostructure: a first-principles study.
    Wang LF; Ma TB; Hu YZ; Zheng Q; Wang H; Luo J
    Nanotechnology; 2014 Sep; 25(38):385701. PubMed ID: 25180979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic-Scale Superlubricity in Ti
    Zhang Y; Chen X; Arramel ; Augustine KB; Zhang P; Jiang J; Wu Q; Li N
    ACS Omega; 2021 Apr; 6(13):9013-9019. PubMed ID: 33842771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First-principles Calculations Reveal Frictional Advantage for C
    Mukherjee M; Mandal S; Datta A
    Chem Asian J; 2023 Sep; 18(17):e202300525. PubMed ID: 37477097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interfacial Interactions in van der Waals Heterostructures of MoS
    Li H; Wu JB; Ran F; Lin ML; Liu XL; Zhao Y; Lu X; Xiong Q; Zhang J; Huang W; Zhang H; Tan PH
    ACS Nano; 2017 Nov; 11(11):11714-11723. PubMed ID: 29068659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origin of Nanoscale Friction Contrast between Supported Graphene, MoS
    Vazirisereshk MR; Ye H; Ye Z; Otero-de-la-Roza A; Zhao MQ; Gao Z; Johnson ATC; Johnson ER; Carpick RW; Martini A
    Nano Lett; 2019 Aug; 19(8):5496-5505. PubMed ID: 31267757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Twisting Dynamics of Large Lattice-Mismatch van der Waals Heterostructures.
    Liao M; Silva A; Du L; Nicolini P; Claerbout VEP; Kramer D; Yang R; Shi D; Polcar T; Zhang G
    ACS Appl Mater Interfaces; 2023 Apr; 15(15):19616-19623. PubMed ID: 37023057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic layer MoS
    Ye F; Lee J; Feng PX
    Nanoscale; 2017 Nov; 9(46):18208-18215. PubMed ID: 29160324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lattice distortion-enhanced superlubricity of (Mo, X)S
    Li P; Lu J; Wang WY; Sui X; Zou C; Zhang Y; Wang J; Lin D; Lu Z; Song H; Fan X; Hao J; Li J; Liu W
    Nanoscale; 2021 Oct; 13(38):16234-16243. PubMed ID: 34546276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled van der Waals epitaxy of monolayer MoS2 triangular domains on graphene.
    Ago H; Endo H; Solís-Fernández P; Takizawa R; Ohta Y; Fujita Y; Yamamoto K; Tsuji M
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5265-73. PubMed ID: 25695865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. UItra-low friction and edge-pinning effect in large-lattice-mismatch van der Waals heterostructures.
    Liao M; Nicolini P; Du L; Yuan J; Wang S; Yu H; Tang J; Cheng P; Watanabe K; Taniguchi T; Gu L; Claerbout VEP; Silva A; Kramer D; Polcar T; Yang R; Shi D; Zhang G
    Nat Mater; 2022 Jan; 21(1):47-53. PubMed ID: 34354215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superlubricity Enabled by Pressure-Induced Friction Collapse.
    Sun J; Zhang Y; Lu Z; Li Q; Xue Q; Du S; Pu J; Wang L
    J Phys Chem Lett; 2018 May; 9(10):2554-2559. PubMed ID: 29714483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Indirect Interlayer Bonding in Graphene-Topological Insulator van der Waals Heterostructure: Giant Spin-Orbit Splitting of the Graphene Dirac States.
    Rajput S; Li YY; Weinert M; Li L
    ACS Nano; 2016 Sep; 10(9):8450-6. PubMed ID: 27617796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast charge transfer dynamics pathways in two-dimensional MoS
    Garcia-Basabe Y; Rocha AR; Vicentin FC; Villegas CEP; Nascimento R; Romani EC; de Oliveira EC; Fechine GJM; Li S; Eda G; Larrude DG
    Phys Chem Chem Phys; 2017 Nov; 19(44):29954-29962. PubMed ID: 29090284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Assembly-Induced Alternately Stacked Single-Layer MoS2 and N-doped Graphene: A Novel van der Waals Heterostructure for Lithium-Ion Batteries.
    Zhao C; Wang X; Kong J; Ang JM; Lee PS; Liu Z; Lu X
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2372-9. PubMed ID: 26745784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures.
    Wang H; Bang J; Sun Y; Liang L; West D; Meunier V; Zhang S
    Nat Commun; 2016 May; 7():11504. PubMed ID: 27160484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe₂/MoS₂ van der Waals Heterostructures.
    Zhang K; Zhang T; Cheng G; Li T; Wang S; Wei W; Zhou X; Yu W; Sun Y; Wang P; Zhang D; Zeng C; Wang X; Hu W; Fan HJ; Shen G; Chen X; Duan X; Chang K; Dai N
    ACS Nano; 2016 Mar; 10(3):3852-8. PubMed ID: 26950255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.