These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 28726941)

  • 21. Dissipation from Interlayer Friction in Graphene Nanoelectromechanical Resonators.
    Ferrari PF; Kim S; van der Zande AM
    Nano Lett; 2021 Oct; 21(19):8058-8065. PubMed ID: 34559536
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reduced Thermal Transport in the Graphene/MoS
    Srinivasan S; Balasubramanian G
    Langmuir; 2018 Mar; 34(10):3326-3335. PubMed ID: 29429341
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Robust Stacking-Independent Ultrafast Charge Transfer in MoS
    Ji Z; Hong H; Zhang J; Zhang Q; Huang W; Cao T; Qiao R; Liu C; Liang J; Jin C; Jiao L; Shi K; Meng S; Liu K
    ACS Nano; 2017 Dec; 11(12):12020-12026. PubMed ID: 29116758
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Freestanding van der Waals heterostructures of graphene and transition metal dichalcogenides.
    Azizi A; Eichfeld S; Geschwind G; Zhang K; Jiang B; Mukherjee D; Hossain L; Piasecki AF; Kabius B; Robinson JA; Alem N
    ACS Nano; 2015 May; 9(5):4882-90. PubMed ID: 25885122
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-induced uniaxial strain in MoS2 monolayers with local van der Waals-stacked interlayer interactions.
    Zhang K; Hu S; Zhang Y; Zhang T; Zhou X; Sun Y; Li TX; Fan HJ; Shen G; Chen X; Dai N
    ACS Nano; 2015 Mar; 9(3):2704-10. PubMed ID: 25716291
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interlayer Friction and Superlubricity in Single-Crystalline Contact Enabled by Two-Dimensional Flake-Wrapped Atomic Force Microscope Tips.
    Liu Y; Song A; Xu Z; Zong R; Zhang J; Yang W; Wang R; Hu Y; Luo J; Ma T
    ACS Nano; 2018 Aug; 12(8):7638-7646. PubMed ID: 30060665
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interfacial friction of vdW heterostructures affected by in-plane strain.
    Zhou X; Chen P; Xu RG; Zhang C; Zhang J
    Nanotechnology; 2022 Oct; 34(1):. PubMed ID: 36174390
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Layer-Controlled Chemical Vapor Deposition Growth of MoS2 Vertical Heterostructures via van der Waals Epitaxy.
    Samad L; Bladow SM; Ding Q; Zhuo J; Jacobberger RM; Arnold MS; Jin S
    ACS Nano; 2016 Jul; 10(7):7039-46. PubMed ID: 27373305
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sliding Friction and Superlubricity of Colloidal AFM Probes Coated by Tribo-Induced Graphitic Transfer Layers.
    Buzio R; Gerbi A; Bernini C; Repetto L; Vanossi A
    Langmuir; 2022 Oct; 38(41):12570-12580. PubMed ID: 36190908
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robust Superlubricity in Graphene/h-BN Heterojunctions.
    Leven I; Krepel D; Shemesh O; Hod O
    J Phys Chem Lett; 2013 Jan; 4(1):115-20. PubMed ID: 26291222
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low-Frequency Interlayer Raman Modes to Probe Interface of Twisted Bilayer MoS2.
    Huang S; Liang L; Ling X; Puretzky AA; Geohegan DB; Sumpter BG; Kong J; Meunier V; Dresselhaus MS
    Nano Lett; 2016 Feb; 16(2):1435-44. PubMed ID: 26797083
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A comparative study of mechanisms of the adsorption of CO
    Enujekwu FM; Ezeh CI; George MW; Xu M; Do H; Zhang Y; Zhao H; Wu T
    Nanoscale Adv; 2019 Apr; 1(4):1442-1451. PubMed ID: 36132593
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Theoretical modeling of structural superlubricity in rotated bilayer graphene, hexagonal boron nitride, molybdenum disulfide, and blue phosphorene.
    Kabengele T; Johnson ER
    Nanoscale; 2021 Sep; 13(34):14399-14407. PubMed ID: 34473160
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural superlubricity in 2D van der Waals heterojunctions.
    Yuan J; Yang R; Zhang G
    Nanotechnology; 2021 Dec; 33(10):. PubMed ID: 34229304
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sliding mechanisms in multilayered hexagonal boron nitride and graphene: the effects of directionality, thickness, and sliding constraints.
    Gao W; Tkatchenko A
    Phys Rev Lett; 2015 Mar; 114(9):096101. PubMed ID: 25793829
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interfacial Friction Anisotropy in Few-Layer Van der Waals Crystals.
    Wang K; Li H; Guo Y
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443239
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Atomically Sharp Interface in an h-BN-epitaxial graphene van der Waals Heterostructure.
    Sediri H; Pierucci D; Hajlaoui M; Henck H; Patriarche G; Dappe YJ; Yuan S; Toury B; Belkhou R; Silly MG; Sirotti F; Boutchich M; Ouerghi A
    Sci Rep; 2015 Nov; 5():16465. PubMed ID: 26585245
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sliding friction of graphene/hexagonal -boron nitride heterojunctions: a route to robust superlubricity.
    Mandelli D; Leven I; Hod O; Urbakh M
    Sci Rep; 2017 Sep; 7(1):10851. PubMed ID: 28883489
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Superlubricity between MoS
    Li H; Wang J; Gao S; Chen Q; Peng L; Liu K; Wei X
    Adv Mater; 2017 Jul; 29(27):. PubMed ID: 28497859
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Theoretical study of electronic and tribological properties of h-BNC2/graphene, h-BNC2/h-BN and h-BNC2/h-BNC2 bilayers.
    Ansari N; Nazari F; Illas F
    Phys Chem Chem Phys; 2015 May; 17(19):12908-18. PubMed ID: 25909457
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.