BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

562 related articles for article (PubMed ID: 28727221)

  • 1. Scar formation following excisional and burn injuries in a red Duroc pig model.
    Blackstone BN; Kim JY; McFarland KL; Sen CK; Supp DM; Bailey JK; Powell HM
    Wound Repair Regen; 2017 Aug; 25(4):618-631. PubMed ID: 28727221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of Local Inflammation and Hypoxia in the Formation of Hypertrophic Scars-A New Model in the Duroc Pig.
    Nischwitz SP; Fink J; Schellnegger M; Luze H; Bubalo V; Tetyczka C; Roblegg E; Holecek C; Zacharias M; Kamolz LP; Kotzbeck P
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal injury model in the rabbit ear with quantifiable burn progression and hypertrophic scar.
    Friedrich EE; Niknam-Bienia S; Xie P; Jia SX; Hong SJ; Mustoe TA; Galiano RD
    Wound Repair Regen; 2017 Apr; 25(2):327-337. PubMed ID: 28370931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of skin graft thickness on scar development in a porcine burn model.
    DeBruler DM; Blackstone BN; McFarland KL; Baumann ME; Supp DM; Bailey JK; Powell HM
    Burns; 2018 Jun; 44(4):917-930. PubMed ID: 29661554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Pathomorphological observation of the hypertrophic scar induced by injury to conical structure in female red Duroc pig].
    Liang Z; Xie CY; Lin HB; Guo ZD; Yang WG
    Zhonghua Shao Shang Za Zhi; 2006 Feb; 22(1):29-32. PubMed ID: 16680958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The female, red Duroc pig as an animal model of hypertrophic scarring and the potential role of the cones of skin.
    Zhu KQ; Engrav LH; Gibran NS; Cole JK; Matsumura H; Piepkorn M; Isik FF; Carrougher GJ; Muangman PM; Yunusov MY; Yang TM
    Burns; 2003 Nov; 29(7):649-64. PubMed ID: 14556722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Further similarities between cutaneous scarring in the female, red Duroc pig and human hypertrophic scarring.
    Zhu KQ; Engrav LH; Tamura RN; Cole JA; Muangman P; Carrougher GJ; Gibran NS
    Burns; 2004 Sep; 30(6):518-30. PubMed ID: 15302416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skin wound healing in the first generation (F1) offspring of Yorkshire and red Duroc pigs: evidence for genetic inheritance of wound phenotype.
    Gallant-Behm CL; Tsao H; Reno C; Olson ME; Hart DA
    Burns; 2006 Mar; 32(2):180-93. PubMed ID: 16448761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in Research in Animal Models of Burn-Related Hypertrophic Scarring.
    Domergue S; Jorgensen C; Noël D
    J Burn Care Res; 2015; 36(5):e259-66. PubMed ID: 25356852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Transcriptome Analysis of Superficial and Deep Partial-Thickness Burn Wounds in Yorkshire vs Red Duroc Pigs.
    Nguyen JQ; Sanjar F; Rajasekhar Karna SL; Fourcaudot AB; Wang LJ; Silliman DT; Lai Z; Chen Y; Leung KP
    J Burn Care Res; 2022 Nov; 43(6):1299-1311. PubMed ID: 35255138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects of local transplantation of autologous adipose-derived mesenchymal stem cells on the formation of hyperplastic scar on rabbit ears].
    Chen L; Wang DL; Wei ZR; Wang B; Qi JP; Sun GF
    Zhonghua Shao Shang Za Zhi; 2016 Oct; 32(10):582-587. PubMed ID: 27765088
    [No Abstract]   [Full Text] [Related]  

  • 12. Autologous adipose-derived regenerative cell therapy modulates development of hypertrophic scarring in a red Duroc porcine model.
    Foubert P; Zafra D; Liu M; Rajoria R; Gutierrez D; Tenenhaus M; Fraser JK
    Stem Cell Res Ther; 2017 Nov; 8(1):261. PubMed ID: 29141687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of Ablative Fractional CO2 Laser and Er:YAG Laser to Treat Hypertrophic Scars in a Red Duroc Pig Model.
    Rodriguez-Menocal L; Davis SS; Becerra S; Salgado M; Gill J; Valdes J; Candanedo A; Natesan S; Solis M; Guzman W; Higa A; Schulman CI; Christy RJ; Waibel J; Badiavas EV
    J Burn Care Res; 2018 Oct; 39(6):954-962. PubMed ID: 29718376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of chymase activity on skin thickness in the Clawn miniature pig hypertrophic scarring model.
    Jimi S; Matsumura H
    J Plast Surg Hand Surg; 2017 Dec; 51(6):446-452. PubMed ID: 28384007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Review of the female Duroc/Yorkshire pig model of human fibroproliferative scarring.
    Zhu KQ; Carrougher GJ; Gibran NS; Isik FF; Engrav LH
    Wound Repair Regen; 2007; 15 Suppl 1(Suppl 1):S32-9. PubMed ID: 17727465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fractional CO
    Baumann ME; Blackstone BN; Malara MM; Clairmonte IA; Supp DM; Bailey JK; Powell HM
    Burns; 2020 Jun; 46(4):937-948. PubMed ID: 31767253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The correlation of in vivo burn scar contraction with the level of α-smooth muscle actin expression.
    Wang XQ; Kravchuk O; Winterford C; Kimble RM
    Burns; 2011 Dec; 37(8):1367-77. PubMed ID: 21855218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A porcine deep dermal partial thickness burn model with hypertrophic scarring.
    Cuttle L; Kempf M; Phillips GE; Mill J; Hayes MT; Fraser JF; Wang XQ; Kimble RM
    Burns; 2006 Nov; 32(7):806-20. PubMed ID: 16884856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatment of Burn and Surgical Wounds With Recombinant Human Tropoelastin Produces New Elastin Fibers in Scars.
    Xie H; Lucchesi L; Zheng B; Ladich E; Pineda T; Merten R; Gregory C; Rutten M; Gregory K
    J Burn Care Res; 2017; 38(5):e859-e867. PubMed ID: 28221299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microscopic inflammatory foci in burn scars: data from a porcine burn model.
    Wang XQ; Phillips GE; Wilkie I; Greer R; Kimble RM
    J Cutan Pathol; 2010 May; 37(5):530-4. PubMed ID: 19614732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.