These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 28727438)

  • 1. A Wettability Metric for Characterization of Capillary Flow on Textured Superhydrophilic Surfaces.
    Allred TP; Weibel JA; Garimella SV
    Langmuir; 2017 Aug; 33(32):7847-7853. PubMed ID: 28727438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-wetting droplets on hot superhydrophilic surfaces.
    Adera S; Raj R; Enright R; Wang EN
    Nat Commun; 2013; 4():2518. PubMed ID: 24077386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Droplet state and mechanism of contact line movement on laser-textured aluminum alloy surfaces.
    Kuznetsov GV; Feoktistov DV; Orlova EG; Zykov IY; Islamova AG
    J Colloid Interface Sci; 2019 Oct; 553():557-566. PubMed ID: 31238226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic wetting and spreading and the role of topography.
    McHale G; Newton MI; Shirtcliffe NJ
    J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enabling Highly Effective Boiling from Superhydrophobic Surfaces.
    Allred TP; Weibel JA; Garimella SV
    Phys Rev Lett; 2018 Apr; 120(17):174501. PubMed ID: 29756846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of surface wettability and liquid viscosity on the dynamic wetting of individual drops.
    Chen L; Bonaccurso E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022401. PubMed ID: 25215736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoporosity-driven superhydrophilicity: a means to create multifunctional antifogging coatings.
    Cebeci FC; Wu Z; Zhai L; Cohen RE; Rubner MF
    Langmuir; 2006 Mar; 22(6):2856-62. PubMed ID: 16519495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tensiometric Characterization of Superhydrophobic Surfaces As Compared to the Sessile and Bouncing Drop Methods.
    Hisler V; Jendoubi H; Hairaye C; Vonna L; Le Houérou V; Mermet F; Nardin M; Haidara H
    Langmuir; 2016 Aug; 32(31):7765-73. PubMed ID: 27408983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A universal approach to recover the original superhydrophilicity of micro/nano-textured metal or metal oxide surfaces.
    Long J; Li Y; Ouyang Z; Xi M; Wu J; Lin J; Xie X
    J Colloid Interface Sci; 2022 Dec; 628(Pt B):534-544. PubMed ID: 36007418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Viscous Dissipative Processes on the Wetting of Textured Surfaces.
    Grewal HS; Nam Kim H; Cho IJ; Yoon ES
    Sci Rep; 2015 Sep; 5():14159. PubMed ID: 26390958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wettability of Reentrant Surfaces: A Global Energy Approach.
    Silvestrini M; Brito C
    Langmuir; 2017 Oct; 33(43):12535-12545. PubMed ID: 28985080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unified model for contact angle hysteresis on heterogeneous and superhydrophobic surfaces.
    Raj R; Enright R; Zhu Y; Adera S; Wang EN
    Langmuir; 2012 Nov; 28(45):15777-88. PubMed ID: 23057739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding wetting dynamics and stability of aqueous droplet over superhydrophilic spot surrounded by superhydrophobic surface.
    Majhy B; Singh VP; Sen AK
    J Colloid Interface Sci; 2020 Apr; 565():582-591. PubMed ID: 31982724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic Approach for the Elaboration of Highly Hydrophobic Surfaces: Study of the Links between Morphology and Wettability.
    Legrand Q; Benayoun S; Valette S
    Biomimetics (Basel); 2021 Jun; 6(2):. PubMed ID: 34201259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superhydrophobic-superhydrophilic binary micropatterns by localized thermal treatment of polyhedral oligomeric silsesquioxane (POSS)-silica films.
    Schutzius TM; Bayer IS; Jursich GM; Das A; Megaridis CM
    Nanoscale; 2012 Sep; 4(17):5378-85. PubMed ID: 22820974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UVO-tunable superhydrophobic to superhydrophilic wetting transition on biomimetic nanostructured surfaces.
    Han JT; Kim S; Karim A
    Langmuir; 2007 Feb; 23(5):2608-14. PubMed ID: 17269808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polygonal non-wetting droplets on microtextured surfaces.
    Lou J; Shi S; Ma C; Zhou X; Huang D; Zheng Q; Lv C
    Nat Commun; 2022 May; 13(1):2685. PubMed ID: 35562518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tailoring anisotropic wetting properties on submicrometer-scale periodic grooved surfaces.
    Xia D; He X; Jiang YB; Lopez GP; Brueck SR
    Langmuir; 2010 Feb; 26(4):2700-6. PubMed ID: 20085338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.