These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 28727559)

  • 1. A Microfluidic Cytometer for Complete Blood Count With a 3.2-Megapixel, 1.1- μm-Pitch Super-Resolution Image Sensor in 65-nm BSI CMOS.
    Liu X; Huang X; Jiang Y; Xu H; Guo J; Hou HW; Yan M; Yu H
    IEEE Trans Biomed Circuits Syst; 2017 Aug; 11(4):794-803. PubMed ID: 28727559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning Based Single-Frame Super-Resolution Processing for Lensless Blood Cell Counting.
    Huang X; Jiang Y; Liu X; Xu H; Han Z; Rong H; Yang H; Yan M; Yu H
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27827837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A contact-imaging based microfluidic cytometer with machine-learning for single-frame super-resolution processing.
    Huang X; Guo J; Wang X; Yan M; Kang Y; Yu H
    PLoS One; 2014; 9(8):e104539. PubMed ID: 25111497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An integrated centrifugal microfluidic strategy for point-of-care complete blood counting.
    Khodadadi R; Eghbal M; Ofoghi H; Balaei A; Tamayol A; Abrinia K; Sanati-Nezhad A; Samandari M
    Biosens Bioelectron; 2024 Feb; 245():115789. PubMed ID: 37979545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated Blood Sample Preparation Unit (ABSPU) for Portable Microfluidic Flow Cytometry.
    Chaturvedi A; Gorthi SS
    SLAS Technol; 2017 Feb; 22(1):73-80. PubMed ID: 27558692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Point-of-Care Device for Molecular Diagnosis Based on CMOS SPAD Detectors with Integrated Microfluidics.
    Canals J; Franch N; Alonso O; Vilà A; Diéguez A
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30678225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A portable battery powered microfluidic impedance cytometer with smartphone readout: towards personal health monitoring.
    Talukder N; Furniturewalla A; Le T; Chan M; Hirday S; Cao X; Xie P; Lin Z; Gholizadeh A; Orbine S; Javanmard M
    Biomed Microdevices; 2017 Jun; 19(2):36. PubMed ID: 28432532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic Cartridges for Automated, Point-of-Care Blood Cell Counting.
    Smith S; Madzivhandila P; Sewart R; Govender U; Becker H; Roux P; Land K
    SLAS Technol; 2017 Apr; 22(2):176-185. PubMed ID: 27856945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A portable spinning disc for complete blood count (CBC).
    Agarwal R; Sarkar A; Bhowmik A; Mukherjee D; Chakraborty S
    Biosens Bioelectron; 2020 Feb; 150():111935. PubMed ID: 31818760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultraportable Flow Cytometer Based on an All-Glass Microfluidic Chip.
    Li J; Cui Y; Xie Q; Jiang T; Xin S; Liu P; Zhou T; Li Q
    Anal Chem; 2023 Jan; 95(4):2294-2302. PubMed ID: 36654498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic cytometers with integrated on-chip optical systems for red blood cell and platelet counting.
    Zhao Y; Li Q; Hu X; Lo Y
    Biomicrofluidics; 2016 Nov; 10(6):064119. PubMed ID: 28058085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated cell manipulation system--CMOS/microfluidic hybrid.
    Lee H; Liu Y; Ham D; Westervelt RM
    Lab Chip; 2007 Mar; 7(3):331-7. PubMed ID: 17330164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical Analysis of the Random Telegraph Noise in a 1.1 μm Pixel, 8.3 MP CMOS Image Sensor Using On-Chip Time Constant Extraction Method.
    Chao CY; Tu H; Wu TM; Chou KY; Yeh SF; Yin C; Lee CL
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29168778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic lysis of human blood for leukocyte analysis using single cell impedance cytometry.
    Han X; van Berkel C; Gwyer J; Capretto L; Morgan H
    Anal Chem; 2012 Jan; 84(2):1070-5. PubMed ID: 22148390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of Reliable, High Performance WLCSP for BSI CMOS Image Sensor for Automotive Application.
    Zhou T; Ma S; Yu D; Li M; Hang T
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32707858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resonance-enhanced microfluidic impedance cytometer for detection of single bacteria.
    Haandbæk N; With O; Bürgel SC; Heer F; Hierlemann A
    Lab Chip; 2014 Sep; 14(17):3313-24. PubMed ID: 24984254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micromolar Metabolite Measurement in an Electronically Multiplexed Format.
    Annese VF; Giagkoulovits C; Hu C; Al-Rawhani MA; Grant J; Patil SB; Cumming DRS
    IEEE Trans Biomed Eng; 2022 Sep; 69(9):2715-2722. PubMed ID: 35104208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Front-Inner Lens for High Sensitivity of CMOS Image Sensors.
    Seok G; Kim Y
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30934920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 9 MHz-2.4 GHz Fully Integrated Transceiver IC for a Microfluidic-CMOS Platform Dedicated to Miniaturized Dielectric Spectroscopy.
    Bakhshiani M; Suster MA; Mohseni P
    IEEE Trans Biomed Circuits Syst; 2015 Dec; 9(6):849-61. PubMed ID: 26761883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The HemoScreen, a novel haematology analyser for the point of care.
    Ben-Yosef Y; Marom B; Hirshberg G; D'Souza C; Larsson A; Bransky A
    J Clin Pathol; 2016 Aug; 69(8):720-5. PubMed ID: 26786235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.