These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 28727560)

  • 1. A Multimodal Framework Based on Integration of Cortical and Muscular Activities for Decoding Human Intentions About Lower Limb Motions.
    Cui C; Bian GB; Hou ZG; Zhao J; Zhou H
    IEEE Trans Biomed Circuits Syst; 2017 Aug; 11(4):889-899. PubMed ID: 28727560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards Efficient Decoding of Multiple Classes of Motor Imagery Limb Movements Based on EEG Spectral and Time Domain Descriptors.
    Samuel OW; Geng Y; Li X; Li G
    J Med Syst; 2017 Oct; 41(12):194. PubMed ID: 29080913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hybrid EEG-EMG BMI improves the detection of movement intention in cortical stroke patients with complete hand paralysis.
    Loopez-Larraz E; Birbaumer N; Ramos-Murguialday A
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2000-2003. PubMed ID: 30440792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical Decoding Model of Upper Limb Movement Intention From EEG Signals Based on Attention State Estimation.
    Bi L; Xia S; Fei W
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2008-2016. PubMed ID: 34559657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study.
    Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D
    J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upper Limb Prosthesis Control: A Hybrid EEG-EMG Scheme for Motion Estimation in Transhumeral Subjects.
    Bakshi K; Pramanik R; Manjunatha M; Kumar CS
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2024-2027. PubMed ID: 30440798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Muscle Synergies in Real-Time Classification of Upper Limb Motions using Extreme Learning Machines.
    Antuvan CW; Bisio F; Marini F; Yen SC; Cambria E; Masia L
    J Neuroeng Rehabil; 2016 Aug; 13(1):76. PubMed ID: 27527511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decoding Upper Limb Movement Attempt From EEG Measurements of the Contralesional Motor Cortex in Chronic Stroke Patients.
    Antelis JM; Montesano L; Ramos-Murguialday A; Birbaumer N; Minguez J
    IEEE Trans Biomed Eng; 2017 Jan; 64(1):99-111. PubMed ID: 27046866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Feature fusion of electrocardiogram and surface electromyography for estimating the fatigue states during lower limb rehabilitation].
    Yuan Y; Cao D; Li C; Liu C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Dec; 37(6):1056-1064. PubMed ID: 33369345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating Convolutional Neural Networks as a Method of EEG-EMG Fusion.
    Tryon J; Trejos AL
    Front Neurorobot; 2021; 15():692183. PubMed ID: 34887739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EEG-Based Lower-Limb Movement Onset Decoding: Continuous Classification and Asynchronous Detection.
    Liu D; Chen W; Lee K; Chavarriaga R; Iwane F; Bouri M; Pei Z; Millan JDR
    IEEE Trans Neural Syst Rehabil Eng; 2018 Aug; 26(8):1626-1635. PubMed ID: 30004882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feature-Level Fusion of Surface Electromyography for Activity Monitoring.
    Xi X; Tang M; Luo Z
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29462968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle force estimation from lower limb EMG signals using novel optimised machine learning techniques.
    Mokri C; Bamdad M; Abolghasemi V
    Med Biol Eng Comput; 2022 Mar; 60(3):683-699. PubMed ID: 35029815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homology Characteristics of EEG and EMG for Lower Limb Voluntary Movement Intention.
    Zhang X; Li H; Lu Z; Yin G
    Front Neurorobot; 2021; 15():642607. PubMed ID: 34220479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing Recalibration Strategies for Electroencephalography-Based Decoders of Movement Intention in Neurological Patients with Motor Disability.
    López-Larraz E; Ibáñez J; Trincado-Alonso F; Monge-Pereira E; Pons JL; Montesano L
    Int J Neural Syst; 2018 Sep; 28(7):1750060. PubMed ID: 29463157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A brain-controlled lower-limb exoskeleton for human gait training.
    Liu D; Chen W; Pei Z; Wang J
    Rev Sci Instrum; 2017 Oct; 88(10):104302. PubMed ID: 29092520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification of upper limb center-out reaching tasks by means of EEG-based continuous decoding techniques.
    Úbeda A; Azorín JM; Chavarriaga R; R Millán JD
    J Neuroeng Rehabil; 2017 Feb; 14(1):9. PubMed ID: 28143603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross-domain prediction approach of human lower limb voluntary movement intention for exoskeleton robot based on EEG signals.
    Dong R; Zhang X; Li H; Lu Z; Li C; Zhu A
    Front Bioeng Biotechnol; 2024; 12():1448903. PubMed ID: 39246298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High accuracy decoding of user intentions using EEG to control a lower-body exoskeleton.
    Kilicarslan A; Prasad S; Grossman RG; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5606-9. PubMed ID: 24111008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Systematic Review of Sensor Fusion Methods Using Peripheral Bio-Signals for Human Intention Decoding.
    Dwivedi A; Groll H; Beckerle P
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.