These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28727811)

  • 41. Sequential electron acceptor model for evaluation of in situ bioremediation of petroleum hydrocarbon contaminants in groundwater.
    Brauner JS; Widdowson MA
    Ann N Y Acad Sci; 1997 Nov; 829():263-79. PubMed ID: 9472325
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Processes controlling the distribution and natural attenuation of dissolved phenolic compounds in a deep sandstone aquifer.
    Thornton SF; Quigley S; Spence MJ; Banwart SA; Bottrell S; Lerner DN
    J Contam Hydrol; 2001 Dec; 53(3-4):233-67. PubMed ID: 11820472
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Kinetic and microbial community analysis of methyl ethyl ketone biodegradation in aquifer sediments.
    Fahrenfeld N; Pruden A; Widdowson M
    Biodegradation; 2017 Feb; 28(1):27-36. PubMed ID: 27766436
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Use of omic tools to assess methyl tert-butyl ether (MTBE) degradation in groundwater.
    Kucharzyk KH; Rectanus HV; Bartling CM; Rosansky S; Minard-Smith A; Mullins LA; Neil K
    J Hazard Mater; 2019 Oct; 378():120618. PubMed ID: 31301927
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Application of UV based advanced oxidation to treat sulfolane in an aqueous medium.
    Yu L; Mehrabani-Zeinabad M; Achari G; Langford CH
    Chemosphere; 2016 Oct; 160():155-61. PubMed ID: 27372265
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fate of N-nitrosodimethylamine in recycled water after recharge into anaerobic aquifer.
    Patterson BM; Pitoi MM; Furness AJ; Bastow TP; McKinley AJ
    Water Res; 2012 Mar; 46(4):1260-72. PubMed ID: 22244272
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Methyl tert-butyl ether biodegradation by indigenous aquifer microorganisms under natural and artificial oxic conditions.
    Landmeyer JE; Chapelle FH; Herlong HH; Bradley PM
    Environ Sci Technol; 2001 Mar; 35(6):1118-26. PubMed ID: 11347923
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bioremediation capability evaluation of benzene and sulfolane contaminated groundwater: Determination of bioremediation parameters.
    Yang CF; Liu SH; Su YM; Chen YR; Lin CW; Lin KL
    Sci Total Environ; 2019 Jan; 648():811-818. PubMed ID: 30138881
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sulfolane degradation by mixed cultures and a bacterial isolate identified as a Variovorax sp.
    Greene EA; Beatty PH; Fedorak PM
    Arch Microbiol; 2000; 174(1-2):111-9. PubMed ID: 10985750
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Does phosphate enhance the natural attenuation of crude oil in groundwater under defined redox conditions?
    Ponsin V; Mouloubou OR; Prudent P; Höhener P
    J Contam Hydrol; 2014 Nov; 169():4-18. PubMed ID: 24795042
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In situ measurements of volatile aromatic hydrocarbon biodegradation rates in groundwater.
    Cozzarelli IM; Bekins BA; Eganhouse RP; Warren E; Essaid HI
    J Contam Hydrol; 2010 Jan; 111(1-4):48-64. PubMed ID: 20060615
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nutrient stimulation of sulfolane biodegradation in a contaminated soil from a sour natural gas plant and in a pristine soil.
    Greene EA; Fedorak PM
    Environ Technol; 2001 Jun; 22(6):619-29. PubMed ID: 11482381
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biodegradation of three selected benzotriazoles in aquifer materials under aerobic and anaerobic conditions.
    Liu YS; Ying GG; Shareef A; Kookana RS
    J Contam Hydrol; 2013 Aug; 151():131-9. PubMed ID: 23777830
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quantification of subfamily I.2.C catechol 2,3-dioxygenase mRNA transcripts in groundwater samples of an oxygen-limited BTEX-contaminated site.
    Táncsics A; Szoboszlay S; Szabó I; Farkas M; Kovács B; Kukolya J; Mayer Z; Kriszt B
    Environ Sci Technol; 2012 Jan; 46(1):232-40. PubMed ID: 22091737
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biodegradation of chlorobenzene and nitrobenzene at interfaces between sediment and water.
    Kurt Z; Shin K; Spain JC
    Environ Sci Technol; 2012 Nov; 46(21):11829-35. PubMed ID: 23035795
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biodegradation of ethylene dibromide (1,2-dibromoethane [EDB]) in microcosms simulating in situ and biostimulated conditions.
    McKeever R; Sheppard D; Nüsslein K; Baek KH; Rieber K; Ergas SJ; Forbes R; Hilyard M; Park C
    J Hazard Mater; 2012 Mar; 209-210():92-8. PubMed ID: 22301079
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Successful aerobic bioremediation of groundwater contaminated with higher chlorinated phenols by indigenous degrader bacteria.
    Mikkonen A; Yläranta K; Tiirola M; Dutra LAL; Salmi P; Romantschuk M; Copley S; Ikäheimo J; Sinkkonen A
    Water Res; 2018 Jul; 138():118-128. PubMed ID: 29574199
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fine-scale degrader community profiling over an aerobic/anaerobic redox gradient in a toluene-contaminated aquifer.
    Larentis M; Hoermann K; Lueders T
    Environ Microbiol Rep; 2013 Apr; 5(2):225-34. PubMed ID: 23584966
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hexadecane and pristane degradation potential at the level of the aquifer--evidence from sediment incubations compared to in situ microcosms.
    Schurig C; Miltner A; Kaestner M
    Environ Sci Pollut Res Int; 2014; 21(15):9081-94. PubMed ID: 24522398
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enhancement of LED based photocatalytic degradation of sulfolane by integration with oxidants and nanomaterials.
    Dharwadkar S; Yu L; Achari G
    Chemosphere; 2021 Jan; 263():128124. PubMed ID: 33297113
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.