These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Redox state changes in human skeletal muscle after isometric contraction. Henriksson J; Katz A; Sahlin K J Physiol; 1986 Nov; 380():441-51. PubMed ID: 3612570 [TBL] [Abstract][Full Text] [Related]
6. Adenine nucleotide depletion in human muscle during exercise: causality and significance of AMP deamination. Sahlin K; Broberg S Int J Sports Med; 1990 May; 11 Suppl 2():S62-7. PubMed ID: 2361781 [TBL] [Abstract][Full Text] [Related]
7. G-1,6-P2 in human skeletal muscle after isometric contraction. Katz A; Lee AD Am J Physiol; 1988 Aug; 255(2 Pt 1):C145-8. PubMed ID: 3407760 [TBL] [Abstract][Full Text] [Related]
8. Propranolol enhances adenine nucleotide degradation in human muscle during exercise. Broberg S; Katz A; Sahlin K J Appl Physiol (1985); 1988 Dec; 65(6):2478-83. PubMed ID: 3215847 [TBL] [Abstract][Full Text] [Related]
9. AMP deaminase deficiency: study of the human skeletal muscle purine metabolism during ischaemic isometric exercise. Sinkeler SP; Binkhorst RA; Joosten EM; Wevers RA; Coerwinkei MM; Oei TL Clin Sci (Lond); 1987 Apr; 72(4):475-82. PubMed ID: 3829596 [TBL] [Abstract][Full Text] [Related]
10. Differences in ammonia and adenylate metabolism in contracting fast and slow muscle. Meyer RA; Terjung RL Am J Physiol; 1979 Sep; 237(3):C111-8. PubMed ID: 474740 [TBL] [Abstract][Full Text] [Related]
11. Redox state and lactate accumulation in human skeletal muscle during dynamic exercise. Sahlin K; Katz A; Henriksson J Biochem J; 1987 Jul; 245(2):551-6. PubMed ID: 3663177 [TBL] [Abstract][Full Text] [Related]
12. AMP deamination and purine exchange in human skeletal muscle during and after intense exercise. Hellsten Y; Richter EA; Kiens B; Bangsbo J J Physiol; 1999 Nov; 520 Pt 3(Pt 3):909-20. PubMed ID: 10545153 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous potentiation and fatigue in quadriceps after a 60-second maximal voluntary isometric contraction. Grange RW; Houston ME J Appl Physiol (1985); 1991 Feb; 70(2):726-31. PubMed ID: 2022565 [TBL] [Abstract][Full Text] [Related]
14. Electrical stimulation and amino acid and ammonia metabolism in the canine gastrocnemius muscle. MacLean DA; Barclay JK; Graham TE Am J Physiol; 1995 Mar; 268(3 Pt 2):R759-70. PubMed ID: 7900920 [TBL] [Abstract][Full Text] [Related]
15. Role of glycogen in control of glycolysis and IMP formation in human muscle during exercise. Spencer MK; Katz A Am J Physiol; 1991 Jun; 260(6 Pt 1):E859-64. PubMed ID: 2058662 [TBL] [Abstract][Full Text] [Related]
16. Influence of ATP turnover and metabolite changes on IMP formation and glycolysis in rat skeletal muscle. Sahlin K; Gorski J; Edström L Am J Physiol; 1990 Sep; 259(3 Pt 1):C409-12. PubMed ID: 2399963 [TBL] [Abstract][Full Text] [Related]
17. Skeletal muscle metabolism, contraction force and glycogen utilization during prolonged electrical stimulation in humans. Hultman E; Spriet LL J Physiol; 1986 May; 374():493-501. PubMed ID: 3746702 [TBL] [Abstract][Full Text] [Related]
18. Force, relaxation and energy metabolism of rat soleus muscle during anaerobic contraction. Sahlin K; Edström L; Sjöholm H Acta Physiol Scand; 1987 Jan; 129(1):1-7. PubMed ID: 3565037 [TBL] [Abstract][Full Text] [Related]
19. Phosphagen and lactate contents of m. quadriceps femoris of man after exercise. Harris RC; Sahlin K; Hultman E J Appl Physiol Respir Environ Exerc Physiol; 1977 Nov; 43(5):852-7. PubMed ID: 22533 [TBL] [Abstract][Full Text] [Related]
20. Buffer capacity and lactate accumulation in skeletal muscle of trained and untrained men. Sahlin K; Henriksson J Acta Physiol Scand; 1984 Nov; 122(3):331-9. PubMed ID: 6516884 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]