BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 28728752)

  • 21. Nanopatterned antimicrobial enzymatic surfaces combining biocidal and fouling release properties.
    Yu Q; Ista LK; López GP
    Nanoscale; 2014 May; 6(9):4750-7. PubMed ID: 24658328
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tuning antimicrobial properties of biomimetic nanopatterned surfaces.
    Michalska M; Gambacorta F; Divan R; Aranson IS; Sokolov A; Noirot P; Laible PD
    Nanoscale; 2018 Apr; 10(14):6639-6650. PubMed ID: 29582025
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties.
    Dastjerdi R; Montazer M
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):5-18. PubMed ID: 20417070
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cicada and catkin inspired dual biomimetic antibacterial structure for the surface modification of implant material.
    Ye J; Deng J; Chen Y; Yang T; Zhu Y; Wu C; Wu T; Jia J; Cheng X; Wang X
    Biomater Sci; 2019 Jun; 7(7):2826-2832. PubMed ID: 31065627
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication and Functional Regulation of Biomimetic Interfaces and Their Antifouling and Antibacterial Applications: A Review.
    Xu Y; Luan X; He P; Zhu D; Mu R; Wang Y; Wei G
    Small; 2024 May; 20(21):e2308091. PubMed ID: 38088535
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Superhydrophobic surfaces: from natural to biomimetic to functional.
    Guo Z; Liu W; Su BL
    J Colloid Interface Sci; 2011 Jan; 353(2):335-55. PubMed ID: 20846662
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antimicrobial Treatment of Polymeric Medical Devices by Silver Nanomaterials and Related Technology.
    Polívková M; Hubáček T; Staszek M; Švorčík V; Siegel J
    Int J Mol Sci; 2017 Feb; 18(2):. PubMed ID: 28212308
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tailored antireflective biomimetic nanostructures for UV applications.
    Morhard C; Pacholski C; Lehr D; Brunner R; Helgert M; Sundermann M; Spatz JP
    Nanotechnology; 2010 Oct; 21(42):425301. PubMed ID: 20858934
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A review of the biomaterials technologies for infection-resistant surfaces.
    Campoccia D; Montanaro L; Arciola CR
    Biomaterials; 2013 Nov; 34(34):8533-54. PubMed ID: 23953781
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Natural and bioinspired nanostructured bactericidal surfaces.
    Tripathy A; Sen P; Su B; Briscoe WH
    Adv Colloid Interface Sci; 2017 Oct; 248():85-104. PubMed ID: 28780961
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication and modelling of fractal, biomimetic, micro and nano-topographical surfaces.
    Kyle DJ; Oikonomou A; Hill E; Vijayaraghavan A; Bayat A
    Bioinspir Biomim; 2016 Jul; 11(4):046009. PubMed ID: 27454401
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Antibacterial surfaces developed from bio-inspired approaches.
    Glinel K; Thebault P; Humblot V; Pradier CM; Jouenne T
    Acta Biomater; 2012 May; 8(5):1670-84. PubMed ID: 22289644
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomimetic Nanopillar Silicon Surfaces Rupture Fungal Spores.
    Linklater DP; Le PH; Aburto-Medina A; Crawford RJ; Maclaughlin S; Juodkazis S; Ivanova EP
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674814
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Organization of Pseudomonas fluorescens on chemically different nano/microstructured surfaces.
    Díaz C; Salvarezza RC; Fernández Lorenzo de Mele MA; Schilardi PL
    ACS Appl Mater Interfaces; 2010 Sep; 2(9):2530-9. PubMed ID: 20726529
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Clues for biomimetics from natural composite materials.
    Lapidot S; Meirovitch S; Sharon S; Heyman A; Kaplan DL; Shoseyov O
    Nanomedicine (Lond); 2012 Sep; 7(9):1409-23. PubMed ID: 22994958
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Micro/nano-structured superhydrophobic surfaces in the biomedical field: part II: applications overview.
    Lima AC; Mano JF
    Nanomedicine (Lond); 2015 Jan; 10(2):271-97. PubMed ID: 25600971
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bacterial-nanostructure interactions: The role of cell elasticity and adhesion forces.
    Elbourne A; Chapman J; Gelmi A; Cozzolino D; Crawford RJ; Truong VK
    J Colloid Interface Sci; 2019 Jun; 546():192-210. PubMed ID: 30921674
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Iron-based nano-structured surfaces with antimicrobial properties.
    Yi G; Teong SP; Liu S; Chng S; Yang YY; Zhang Y
    J Mater Chem B; 2020 Nov; 8(44):10146-10153. PubMed ID: 33094777
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent Progress in Two-Dimensional Antimicrobial Nanomaterials.
    Miao H; Teng Z; Wang C; Chong H; Wang G
    Chemistry; 2019 Jan; 25(4):929-944. PubMed ID: 30030852
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design of biomimetic fibrillar interfaces: 1. Making contact.
    Glassmaker NJ; Himeno T; Hui CY; Kim J
    J R Soc Interface; 2004 Nov; 1(1):23-33. PubMed ID: 16849150
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.