These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 28728866)

  • 21. Characterizing the membrane properties of capsules flowing in a square-section microfluidic channel: effects of the membrane constitutive law.
    Hu XQ; Sévénié B; Salsac AV; Leclerc E; Barthès-Biesel D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):063008. PubMed ID: 23848773
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid one-step purification of single-cells encapsulated in alginate microcapsules from oil to aqueous phase using a hydrophobic filter paper: implications for single-cell experiments.
    Lee DH; Jang M; Park JK
    Biotechnol J; 2014 Oct; 9(10):1233-40. PubMed ID: 25130499
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deformability-based cell classification and enrichment using inertial microfluidics.
    Hur SC; Henderson-MacLennan NK; McCabe ER; Di Carlo D
    Lab Chip; 2011 Mar; 11(5):912-20. PubMed ID: 21271000
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Magneto-Hydrodynamic Fractionation (MHF) for continuous and sheathless sorting of high-concentration paramagnetic microparticles.
    Kumar V; Rezai P
    Biomed Microdevices; 2017 Jun; 19(2):39. PubMed ID: 28466285
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inertial migration and axial control of deformable capsules.
    Schaaf C; Stark H
    Soft Matter; 2017 May; 13(19):3544-3555. PubMed ID: 28443874
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sorting cells by their density.
    Norouzi N; Bhakta HC; Grover WH
    PLoS One; 2017; 12(7):e0180520. PubMed ID: 28723908
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Leveraging the elastic deformability of polydimethylsiloxane microfluidic channels for efficient intracellular delivery.
    Alhmoud H; Alkhaled M; Kaynak BE; Hanay MS
    Lab Chip; 2023 Feb; 23(4):714-726. PubMed ID: 36472226
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of mechanical properties of microcapsules and their applications.
    Xiao Z; Zhou L; Sun P; Li Z; Kang Y; Guo M; Niu Y; Zhao D
    J Control Release; 2024 Nov; 375():90-104. PubMed ID: 39233280
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Magneto-Microfluidic System for Investigating the Influence of an Externally Induced Force Gradient in a Collagen Type I ECM on HMVEC Sprouting.
    Herath SCB; Sharghi-Namini S; Du Y; Wang D; Ge R; Wang QG; Asada H; Chen PCY
    SLAS Technol; 2017 Aug; 22(4):413-424. PubMed ID: 27899700
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfluidic Platform to Transduce Cell Viability to Distinct Flow Pathways for High-Accuracy Sensing.
    Chrit FE; Raj A; Young KM; Stone NE; Shankles PG; Lokireddy K; Flowers C; Waller EK; Alexeev A; Sulchek T
    ACS Sens; 2021 Oct; 6(10):3789-3799. PubMed ID: 34546721
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Numerical design of a T-shaped microfluidic device for deformability-based separation of elastic capsules and soft beads.
    Villone MM; Trofa M; Hulsen MA; Maffettone PL
    Phys Rev E; 2017 Nov; 96(5-1):053103. PubMed ID: 29347700
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Motion of an Elastic Capsule in a Trapezoidal Microchannel Under Stokes Flow Conditions.
    Koolivand A; Dimitrakopoulos P
    Polymers (Basel); 2020 May; 12(5):. PubMed ID: 32429526
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Off-center motion of a trapped elastic capsule in a microfluidic channel with a narrow constriction.
    Luo ZY; Bai BF
    Soft Matter; 2017 Nov; 13(44):8281-8292. PubMed ID: 29071316
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Numerical and experimental evaluation of microfluidic sorting devices.
    Taylor JK; Ren CL; Stubley GD
    Biotechnol Prog; 2008; 24(4):981-91. PubMed ID: 19194907
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microfluidic sorting in an optical lattice.
    MacDonald MP; Spalding GC; Dholakia K
    Nature; 2003 Nov; 426(6965):421-4. PubMed ID: 14647376
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Advancements in microfluidics for nanoparticle separation.
    Salafi T; Zeming KK; Zhang Y
    Lab Chip; 2016 Dec; 17(1):11-33. PubMed ID: 27830852
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deformability based sorting of red blood cells improves diagnostic sensitivity for malaria caused by Plasmodium falciparum.
    Guo Q; Duffy SP; Matthews K; Deng X; Santoso AT; Islamzada E; Ma H
    Lab Chip; 2016 Feb; 16(4):645-54. PubMed ID: 26768227
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selective flow-induced vesicle rupture to sort by membrane mechanical properties.
    Pommella A; Brooks NJ; Seddon JM; Garbin V
    Sci Rep; 2015 Aug; 5():13163. PubMed ID: 26302783
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Applications of machine learning for simulations of red blood cells in microfluidic devices.
    Bachratý H; Bachratá K; Chovanec M; Jančigová I; Smiešková M; Kovalčíková K
    BMC Bioinformatics; 2020 Mar; 21(Suppl 2):90. PubMed ID: 32164547
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.