These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1489 related articles for article (PubMed ID: 28729364)
1. TGF-β (Transforming Growth Factor-β) Signaling Protects the Thoracic and Abdominal Aorta From Angiotensin II-Induced Pathology by Distinct Mechanisms. Angelov SN; Hu JH; Wei H; Airhart N; Shi M; Dichek DA Arterioscler Thromb Vasc Biol; 2017 Nov; 37(11):2102-2113. PubMed ID: 28729364 [TBL] [Abstract][Full Text] [Related]
2. Disruption of TGF-β signaling in smooth muscle cell prevents elastase-induced abdominal aortic aneurysm. Gao F; Chambon P; Offermanns S; Tellides G; Kong W; Zhang X; Li W Biochem Biophys Res Commun; 2014 Nov; 454(1):137-43. PubMed ID: 25450370 [TBL] [Abstract][Full Text] [Related]
3. Hypoxia-Inducible Factor-1α in Smooth Muscle Cells Protects Against Aortic Aneurysms-Brief Report. Imanishi M; Chiba Y; Tomita N; Matsunaga S; Nakagawa T; Ueno M; Yamamoto K; Tamaki T; Tomita S Arterioscler Thromb Vasc Biol; 2016 Nov; 36(11):2158-2162. PubMed ID: 27562915 [TBL] [Abstract][Full Text] [Related]
4. MicroRNA-21 Knockout Exacerbates Angiotensin II-Induced Thoracic Aortic Aneurysm and Dissection in Mice With Abnormal Transforming Growth Factor-β-SMAD3 Signaling. Huang X; Yue Z; Wu J; Chen J; Wang S; Wu J; Ren L; Zhang A; Deng P; Wang K; Wu C; Ding X; Ye P; Xia J Arterioscler Thromb Vasc Biol; 2018 May; 38(5):1086-1101. PubMed ID: 29519942 [TBL] [Abstract][Full Text] [Related]
5. Postnatal Deletion of the Type II Transforming Growth Factor-β Receptor in Smooth Muscle Cells Causes Severe Aortopathy in Mice. Hu JH; Wei H; Jaffe M; Airhart N; Du L; Angelov SN; Yan J; Allen JK; Kang I; Wight TN; Fox K; Smith A; Enstrom R; Dichek DA Arterioscler Thromb Vasc Biol; 2015 Dec; 35(12):2647-56. PubMed ID: 26494233 [TBL] [Abstract][Full Text] [Related]
6. Allergic Lung Inflammation Aggravates Angiotensin II-Induced Abdominal Aortic Aneurysms in Mice. Liu CL; Wang Y; Liao M; Wemmelund H; Ren J; Fernandes C; Zhou Y; Sukhova GK; Lindholt JS; Johnsen SP; Zhang JY; Cheng X; Huang X; Daugherty A; Levy BD; Libby P; Shi GP Arterioscler Thromb Vasc Biol; 2016 Jan; 36(1):69-77. PubMed ID: 26543094 [TBL] [Abstract][Full Text] [Related]
7. Azelnidipine suppresses the progression of aortic aneurysm in wild mice model through anti-inflammatory effects. Kurobe H; Matsuoka Y; Hirata Y; Sugasawa N; Maxfield MW; Sata M; Kitagawa T J Thorac Cardiovasc Surg; 2013 Dec; 146(6):1501-8. PubMed ID: 23535154 [TBL] [Abstract][Full Text] [Related]
8. RANKL-mediated osteoclastogenic differentiation of macrophages in the abdominal aorta of angiotensin II-infused apolipoprotein E knockout mice. Tanaka T; Kelly M; Takei Y; Yamanouchi D J Vasc Surg; 2018 Dec; 68(6S):48S-59S.e1. PubMed ID: 29685509 [TBL] [Abstract][Full Text] [Related]
12. Aortopathy in a Mouse Model of Marfan Syndrome Is Not Mediated by Altered Transforming Growth Factor β Signaling. Wei H; Hu JH; Angelov SN; Fox K; Yan J; Enstrom R; Smith A; Dichek DA J Am Heart Assoc; 2017 Jan; 6(1):. PubMed ID: 28119285 [TBL] [Abstract][Full Text] [Related]
13. Transforming growth factor β neutralization finely tunes macrophage phenotype in elastase-induced abdominal aortic aneurysm and is associated with an increase of arginase 1 expression in the aorta. Raffort J; Lareyre F; Clément M; Moratal C; Jean-Baptiste E; Hassen-Khodja R; Burel-Vandenbos F; Bruneval P; Chinetti G; Mallat Z J Vasc Surg; 2019 Aug; 70(2):588-598.e2. PubMed ID: 30792060 [TBL] [Abstract][Full Text] [Related]
15. TGFβ (Transforming Growth Factor-β) Blockade Induces a Human-Like Disease in a Nondissecting Mouse Model of Abdominal Aortic Aneurysm. Lareyre F; Clément M; Raffort J; Pohlod S; Patel M; Esposito B; Master L; Finigan A; Vandestienne M; Stergiopulos N; Taleb S; Trachet B; Mallat Z Arterioscler Thromb Vasc Biol; 2017 Nov; 37(11):2171-2181. PubMed ID: 28912363 [TBL] [Abstract][Full Text] [Related]
16. Tgfbr2 disruption in postnatal smooth muscle impairs aortic wall homeostasis. Li W; Li Q; Jiao Y; Qin L; Ali R; Zhou J; Ferruzzi J; Kim RW; Geirsson A; Dietz HC; Offermanns S; Humphrey JD; Tellides G J Clin Invest; 2014 Feb; 124(2):755-67. PubMed ID: 24401272 [TBL] [Abstract][Full Text] [Related]
17. Genetic Ablation of MicroRNA-33 Attenuates Inflammation and Abdominal Aortic Aneurysm Formation via Several Anti-Inflammatory Pathways. Nakao T; Horie T; Baba O; Nishiga M; Nishino T; Izuhara M; Kuwabara Y; Nishi H; Usami S; Nakazeki F; Ide Y; Koyama S; Kimura M; Sowa N; Ohno S; Aoki H; Hasegawa K; Sakamoto K; Minatoya K; Kimura T; Ono K Arterioscler Thromb Vasc Biol; 2017 Nov; 37(11):2161-2170. PubMed ID: 28882868 [TBL] [Abstract][Full Text] [Related]
18. Divergent roles of matrix metalloproteinase 2 in pathogenesis of thoracic aortic aneurysm. Shen M; Lee J; Basu R; Sakamuri SS; Wang X; Fan D; Kassiri Z Arterioscler Thromb Vasc Biol; 2015 Apr; 35(4):888-98. PubMed ID: 25657308 [TBL] [Abstract][Full Text] [Related]
19. Ursolic acid prevents angiotensin II-induced abdominal aortic aneurysm in apolipoprotein E-knockout mice. Zhai M; Guo J; Ma H; Shi W; Jou D; Yan D; Liu T; Tao J; Duan J; Wang Y; Li S; Lv J; Li C; Lin J; Zhang C; Lin L Atherosclerosis; 2018 Apr; 271():128-135. PubMed ID: 29499360 [TBL] [Abstract][Full Text] [Related]
20. Pharmacological inhibitor of notch signaling stabilizes the progression of small abdominal aortic aneurysm in a mouse model. Cheng J; Koenig SN; Kuivaniemi HS; Garg V; Hans CP J Am Heart Assoc; 2014 Oct; 3(6):e001064. PubMed ID: 25349182 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]