BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 28729432)

  • 21. Erythroblast enucleation is a dynein-dependent process.
    Kobayashi I; Ubukawa K; Sugawara K; Asanuma K; Guo YM; Yamashita J; Takahashi N; Sawada K; Nunomura W
    Exp Hematol; 2016 Apr; 44(4):247-56.e12. PubMed ID: 26724640
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Distribution of actin, myosin, and spectrin during enucleation in erythroid cells of hamster embryo.
    Takano-Ohmuro H; Mukaida M; Morioka K
    Cell Motil Cytoskeleton; 1996; 34(2):95-107. PubMed ID: 8769722
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tropomodulin 1-null mice have a mild spherocytic elliptocytosis with appearance of tropomodulin 3 in red blood cells and disruption of the membrane skeleton.
    Moyer JD; Nowak RB; Kim NE; Larkin SK; Peters LL; Hartwig J; Kuypers FA; Fowler VM
    Blood; 2010 Oct; 116(14):2590-9. PubMed ID: 20585041
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mitochondrial localization and moderated activity are key to murine erythroid enucleation.
    Liang R; Menon V; Qiu J; Arif T; Renuse S; Lin M; Nowak R; Hartmann B; Tzavaras N; Benson DL; Chipuk JE; Fribourg M; Pandey A; Fowler V; Ghaffari S
    Blood Adv; 2021 May; 5(10):2490-2504. PubMed ID: 34032849
    [TBL] [Abstract][Full Text] [Related]  

  • 25. p38α controls erythroblast enucleation and Rb signaling in stress erythropoiesis.
    Schultze SM; Mairhofer A; Li D; Cen J; Beug H; Wagner EF; Hui L
    Cell Res; 2012 Mar; 22(3):539-50. PubMed ID: 21946500
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mammalian erythroblast enucleation requires PI3K-dependent cell polarization.
    Wang J; Ramirez T; Ji P; Jayapal SR; Lodish HF; Murata-Hori M
    J Cell Sci; 2012 Jan; 125(Pt 2):340-9. PubMed ID: 22331356
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tropomodulin 1 directly controls thin filament length in both wild-type and tropomodulin 4-deficient skeletal muscle.
    Gokhin DS; Ochala J; Domenighetti AA; Fowler VM
    Development; 2015 Dec; 142(24):4351-62. PubMed ID: 26586224
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Melanocortins contribute to sequential differentiation and enucleation of human erythroblasts via melanocortin receptors 1, 2 and 5.
    Simamura E; Arikawa T; Ikeda T; Shimada H; Shoji H; Masuta H; Nakajima Y; Otani H; Yonekura H; Hatta T
    PLoS One; 2015; 10(4):e0123232. PubMed ID: 25860801
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ATP produced by anaerobic glycolysis is essential for enucleation of human erythroblasts.
    Goto T; Ubukawa K; Kobayashi I; Sugawara K; Asanuma K; Sasaki Y; Guo YM; Takahashi N; Sawada K; Wakui H; Nunomura W
    Exp Hematol; 2019 Apr; 72():14-26.e1. PubMed ID: 30797950
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluid Shear Stress Upregulates E-Tmod41 via miR-23b-3p and Contributes to F-Actin Cytoskeleton Remodeling during Erythropoiesis.
    Mu W; Wang X; Zhang X; Zhu S; Sun D; Ka W; Sung LA; Yao W
    PLoS One; 2015; 10(8):e0136607. PubMed ID: 26308647
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Erythrocyte tropomodulin isoforms with and without the N-terminal actin-binding domain.
    Yao W; Sung LA
    J Biol Chem; 2010 Oct; 285(41):31408-17. PubMed ID: 20675374
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Systems Approach Identifies Essential FOXO3 Functions at Key Steps of Terminal Erythropoiesis.
    Liang R; Campreciós G; Kou Y; McGrath K; Nowak R; Catherman S; Bigarella CL; Rimmelé P; Zhang X; Gnanapragasam MN; Bieker JJ; Papatsenko D; Ma'ayan A; Bresnick E; Fowler V; Palis J; Ghaffari S
    PLoS Genet; 2015 Oct; 11(10):e1005526. PubMed ID: 26452208
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flow Cytometric Analysis of Erythroblast Enucleation.
    An X; Chen L
    Methods Mol Biol; 2018; 1698():193-203. PubMed ID: 29076091
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Disruption of erythroid nuclear opening and histone release in myelodysplastic syndromes.
    Zhao B; Liu H; Mei Y; Liu Y; Han X; Yang J; Wickrema A; Ji P
    Cancer Med; 2019 Mar; 8(3):1169-1174. PubMed ID: 30701702
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular signature of erythroblast enucleation in human embryonic stem cells.
    Rouzbeh S; Kobari L; Cambot M; Mazurier C; Hebert N; Faussat AM; Durand C; Douay L; Lapillonne H
    Stem Cells; 2015 Aug; 33(8):2431-41. PubMed ID: 25850942
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Discovery of N-arylcinnamamides as novel erythroblast enucleation inducers.
    Lu Z; Xu G; Li Y; Lu C; Shen Y; Zhao B
    Bioorg Chem; 2022 Nov; 128():106105. PubMed ID: 36031698
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamics of human erythroblast enucleation.
    Hebiguchi M; Hirokawa M; Guo YM; Saito K; Wakui H; Komatsuda A; Fujishima N; Takahashi N; Takahashi T; Sasaki T; Nunomura W; Takakuwa Y; Sawada K
    Int J Hematol; 2008 Dec; 88(5):498-507. PubMed ID: 19043811
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The association of erythroblasts with macrophages promotes erythroid proliferation and maturation: a 30-kD heparin-binding protein is involved in this contact.
    Hanspal M; Hanspal JS
    Blood; 1994 Nov; 84(10):3494-504. PubMed ID: 7949103
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The accumulation of miR-125b-5p is indispensable for efficient erythroblast enucleation.
    Fang F; Xu L; Liang L; Qu M; Yao H; Yue W; Chen L; Chen D; Fan Z; He L; Nan X; Zhang H; Xie X; Pei X
    Cell Death Dis; 2022 Oct; 13(10):886. PubMed ID: 36270980
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Histones to the cytosol: exportin 7 is essential for normal terminal erythroid nuclear maturation.
    Hattangadi SM; Martinez-Morilla S; Patterson HC; Shi J; Burke K; Avila-Figueroa A; Venkatesan S; Wang J; Paulsen K; Görlich D; Murata-Hori M; Lodish HF
    Blood; 2014 Sep; 124(12):1931-40. PubMed ID: 25092175
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.