These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 28729656)
1. Endolysosomal targeting of a clinical chlorin photosensitiser for light-triggered delivery of nano-sized medicines. Yaghini E; Dondi R; Tewari KM; Loizidou M; Eggleston IM; MacRobert AJ Sci Rep; 2017 Jul; 7(1):6059. PubMed ID: 28729656 [TBL] [Abstract][Full Text] [Related]
2. Codelivery of a cytotoxin and photosensitiser via a liposomal nanocarrier: a novel strategy for light-triggered cytosolic release. Yaghini E; Dondi R; Edler KJ; Loizidou M; MacRobert AJ; Eggleston IM Nanoscale; 2018 Nov; 10(43):20366-20376. PubMed ID: 30376028 [TBL] [Abstract][Full Text] [Related]
3. Cellular Imaging and Time-Domain FLIM Studies of Meso-Tetraphenylporphine Disulfonate as a Photosensitising Agent in 2D and 3D Models. Balukova A; Bokea K; Barber PR; Ameer-Beg SM; MacRobert AJ; Yaghini E Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38673807 [TBL] [Abstract][Full Text] [Related]
4. Photochemical internalisation: a novel drug delivery system. Selbo PK; Høgset A; Prasmickaite L; Berg K Tumour Biol; 2002; 23(2):103-12. PubMed ID: 12065848 [TBL] [Abstract][Full Text] [Related]
5. Photochemical internalisation of a macromolecular protein toxin using a cell penetrating peptide-photosensitiser conjugate. Wang JT; Giuntini F; Eggleston IM; Bown SG; MacRobert AJ J Control Release; 2012 Jan; 157(2):305-13. PubMed ID: 21889554 [TBL] [Abstract][Full Text] [Related]
6. Efficacy of photochemical internalisation using disulfonated chlorin and porphyrin photosensitisers: An in vitro study in 2D and 3D prostate cancer models. Martinez de Pinillos Bayona A; Woodhams JH; Pye H; Hamoudi RA; Moore CM; MacRobert AJ Cancer Lett; 2017 May; 393():68-75. PubMed ID: 28223166 [TBL] [Abstract][Full Text] [Related]
7. Disulfonated tetraphenyl chlorin (TPCS2a), a novel photosensitizer developed for clinical utilization of photochemical internalization. Berg K; Nordstrand S; Selbo PK; Tran DT; Angell-Petersen E; Høgset A Photochem Photobiol Sci; 2011 Oct; 10(10):1637-51. PubMed ID: 21773635 [TBL] [Abstract][Full Text] [Related]
8. Photophysical and photobiological properties of a sulfonated chlorin photosensitiser TPCS(2a) for photochemical internalisation (PCI). Wang JT; Berg K; Høgset A; Bown SG; MacRobert AJ Photochem Photobiol Sci; 2013 Mar; 12(3):519-26. PubMed ID: 23232550 [TBL] [Abstract][Full Text] [Related]
9. Intracellular re-localisation by photochemical internalisation enhances the cytotoxic effect of gelonin--quantitative studies in normal rat liver. Woodhams J; Lou PJ; Selbo PK; Mosse A; Oukrif D; MacRobert A; Novelli M; Peng Q; Berg K; Bown SG J Control Release; 2010 Mar; 142(3):347-53. PubMed ID: 19932724 [TBL] [Abstract][Full Text] [Related]
10. The influence of Pluronics nanovehicles on dark cytotoxicity, photocytotoxicity and localization of four model photosensitizers in cancer cells. Sobczyński J; Kristensen S; Berg K Photochem Photobiol Sci; 2014 Jan; 13(1):8-22. PubMed ID: 24158176 [TBL] [Abstract][Full Text] [Related]
11. Photochemical internalisation: the journey from basic scientific concept to the threshold of clinical application. Adigbli DK; MacRobert AJ Curr Opin Pharmacol; 2012 Aug; 12(4):434-8. PubMed ID: 22608856 [TBL] [Abstract][Full Text] [Related]
12. 13,15-N-cycloimide derivatives of chlorin p6 with isonicotinyl substituent are photosensitizers targeted to lysosomes. Nazarova A; Ignatova A; Feofanov A; Karmakova T; Pljutinskaya A; Mass O; Grin M; Yakubovskaya R; Mironov A; Maurizot JC Photochem Photobiol Sci; 2007 Nov; 6(11):1184-96. PubMed ID: 17973051 [TBL] [Abstract][Full Text] [Related]
13. Specific photodamage on HT-29 cancer cells leads to endolysosomal failure and autophagy blockage by cathepsin depletion. Yaya-Candela AP; Ravagnani FG; Dietrich N; Sousa R; Baptista MS J Photochem Photobiol B; 2024 Jun; 255():112919. PubMed ID: 38677261 [TBL] [Abstract][Full Text] [Related]
15. A next-generation bifunctional photosensitizer with improved water-solubility for photodynamic therapy and diagnosis. Nishie H; Kataoka H; Yano S; Kikuchi JI; Hayashi N; Narumi A; Nomoto A; Kubota E; Joh T Oncotarget; 2016 Nov; 7(45):74259-74268. PubMed ID: 27708235 [TBL] [Abstract][Full Text] [Related]
16. Photochemical internalization provides time- and space-controlled endolysosomal escape of therapeutic molecules. Selbo PK; Weyergang A; Høgset A; Norum OJ; Berstad MB; Vikdal M; Berg K J Control Release; 2010 Nov; 148(1):2-12. PubMed ID: 20600406 [TBL] [Abstract][Full Text] [Related]
17. Maltotriose Conjugation to a Chlorin Derivative Enhances the Antitumor Effects of Photodynamic Therapy in Peritoneal Dissemination of Pancreatic Cancer. Kato A; Kataoka H; Yano S; Hayashi K; Hayashi N; Tanaka M; Naitoh I; Ban T; Miyabe K; Kondo H; Yoshida M; Fujita Y; Hori Y; Natsume M; Murakami T; Narumi A; Nomoto A; Naiki-Ito A; Takahashi S; Joh T Mol Cancer Ther; 2017 Jun; 16(6):1124-1132. PubMed ID: 28292934 [TBL] [Abstract][Full Text] [Related]
18. Peptide 18-4/chlorin e6-conjugated polyhedral oligomeric silsesquioxane nanoparticles for targeted photodynamic therapy of breast cancer. Kim YJ; Lee HI; Kim JK; Kim CH; Kim YJ Colloids Surf B Biointerfaces; 2020 May; 189():110829. PubMed ID: 32036332 [TBL] [Abstract][Full Text] [Related]
20. Photodynamic therapy with an endocytically located photosensitizer cause a rapid activation of the mitogen-activated protein kinases extracellular signal-regulated kinase, p38, and c-Jun NH2 terminal kinase with opposing effects on cell survival. Weyergang A; Kaalhus O; Berg K Mol Cancer Ther; 2008 Jun; 7(6):1740-50. PubMed ID: 18566245 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]