These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 28729671)
1. Linking Rheology and Printability for Dense and Strong Ceramics by Direct Ink Writing. M'Barki A; Bocquet L; Stevenson A Sci Rep; 2017 Jul; 7(1):6017. PubMed ID: 28729671 [TBL] [Abstract][Full Text] [Related]
2. Effect of Hydrocolloids on Rheological Properties and Printability of Vegetable Inks for 3D Food Printing. Kim HW; Lee JH; Park SM; Lee MH; Lee IW; Doh HS; Park HJ J Food Sci; 2018 Dec; 83(12):2923-2932. PubMed ID: 30506688 [TBL] [Abstract][Full Text] [Related]
3. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Paxton N; Smolan W; Böck T; Melchels F; Groll J; Jungst T Biofabrication; 2017 Nov; 9(4):044107. PubMed ID: 28930091 [TBL] [Abstract][Full Text] [Related]
4. Balancing Functionality and Printability: High-Loading Polymer Resins for Direct Ink Writing. Legett SA; Torres X; Schmalzer AM; Pacheco A; Stockdale JR; Talley S; Robison T; Labouriau A Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365651 [TBL] [Abstract][Full Text] [Related]
5. Rheological Behavior and Printability Study of Tri-Calcium Phosphate Ceramic Inks for Direct Ink Writing Method. Paul D L B; Praveen AS; Čepová L; Elangovan M Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987213 [TBL] [Abstract][Full Text] [Related]
6. High density cell seeding affects the rheology and printability of collagen bioinks. Diamantides N; Dugopolski C; Blahut E; Kennedy S; Bonassar LJ Biofabrication; 2019 Aug; 11(4):045016. PubMed ID: 31342915 [TBL] [Abstract][Full Text] [Related]
7. Design of a Waterborne Polyurethane-Urea Ink for Direct Ink Writing 3D Printing. Vadillo J; Larraza I; Calvo-Correas T; Gabilondo N; Derail C; Eceiza A Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34198656 [TBL] [Abstract][Full Text] [Related]
8. Robocasting of advanced ceramics: ink optimization and protocol to predict the printing parameters - A review. Lamnini S; Elsayed H; Lakhdar Y; Baino F; Smeacetto F; Bernardo E Heliyon; 2022 Sep; 8(9):e10651. PubMed ID: 36164511 [TBL] [Abstract][Full Text] [Related]
9. Soluble Metal Oxo Alkoxide Inks with Advanced Rheological Properties for Inkjet-Printed Thin-Film Transistors. Meyer S; Pham DV; Merkulov S; Weber D; Merkulov A; Benson N; Schmechel R ACS Appl Mater Interfaces; 2017 Jan; 9(3):2625-2633. PubMed ID: 28032746 [TBL] [Abstract][Full Text] [Related]
10. Image-based assessment and machine learning-enabled prediction of printability of polysaccharides-based food ink for 3D printing. Lu Y; Rai R; Nitin N Food Res Int; 2023 Nov; 173(Pt 2):113384. PubMed ID: 37803721 [TBL] [Abstract][Full Text] [Related]
11. Reinforced 3D Composite Structures of γ-, α-Al Ramírez C; Belmonte M; Miranzo P; Osendi MI Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33921950 [TBL] [Abstract][Full Text] [Related]
12. Correlating rheological properties and printability of collagen bioinks: the effects of riboflavin photocrosslinking and pH. Diamantides N; Wang L; Pruiksma T; Siemiatkoski J; Dugopolski C; Shortkroff S; Kennedy S; Bonassar LJ Biofabrication; 2017 Jul; 9(3):034102. PubMed ID: 28677597 [TBL] [Abstract][Full Text] [Related]
13. Optimization and Characterization of Preceramic Inks for Direct Ink Writing of Ceramic Matrix Composite Structures. Franchin G; Maden HS; Wahl L; Baliello A; Pasetto M; Colombo P Materials (Basel); 2018 Mar; 11(4):. PubMed ID: 29597310 [TBL] [Abstract][Full Text] [Related]
14. Rheology and Printability of a Porcelain Clay Paste for DIW 3D Printing of Ceramics with Complex Geometric Structures. Wu Y; Lan J; Wu M; Zhou W; Zhou S; Yang H; Zhang M; Li Y ACS Omega; 2024 Jun; 9(24):26450-26457. PubMed ID: 38911716 [TBL] [Abstract][Full Text] [Related]
15. Printability of Poly(lactic acid) Ink by Embedded 3D Printing Karyappa R; Liu H; Zhu Q; Hashimoto M ACS Appl Mater Interfaces; 2023 May; 15(17):21575-21584. PubMed ID: 37078653 [TBL] [Abstract][Full Text] [Related]
16. Direct Ink Writing of Fully Bio-Based Liquid Crystalline Lignin/Hydroxypropyl Cellulose Aqueous Inks: Optimization of Formulations and Printing Parameters. Ebers LS; Laborie MP ACS Appl Bio Mater; 2020 Oct; 3(10):6897-6907. PubMed ID: 35019351 [TBL] [Abstract][Full Text] [Related]
17. Preheating of Gelatin Improves its Printability with Transglutaminase in Direct Ink Writing 3D Printing. Tan JJY; Lee CP; Hashimoto M Int J Bioprint; 2020; 6(4):296. PubMed ID: 33088999 [TBL] [Abstract][Full Text] [Related]
18. 3D-printable, lightweight, and electrically conductive metal inks based on evaporable emulsion templates jammed with natural rheology modifiers. Young Ryu S; Kwak C; Kim J; Kim S; Cho H; Lee J J Colloid Interface Sci; 2022 Dec; 628(Pt B):758-767. PubMed ID: 36029590 [TBL] [Abstract][Full Text] [Related]
19. Printability study of metal ion crosslinked PEG-catechol based inks. Włodarczyk-Biegun MK; Paez JI; Villiou M; Feng J; Del Campo A Biofabrication; 2020 Apr; 12(3):035009. PubMed ID: 31899910 [TBL] [Abstract][Full Text] [Related]
20. Rheology in Product Development: An Insight into 3D Printing of Hydrogels and Aerogels. Barrulas RV; Corvo MC Gels; 2023 Dec; 9(12):. PubMed ID: 38131974 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]