These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 28729671)
41. Direct Ink Writing: A 3D Printing Technology for Diverse Materials. Saadi MASR; Maguire A; Pottackal NT; Thakur MSH; Ikram MM; Hart AJ; Ajayan PM; Rahman MM Adv Mater; 2022 Jul; 34(28):e2108855. PubMed ID: 35246886 [TBL] [Abstract][Full Text] [Related]
42. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Ouyang L; Yao R; Zhao Y; Sun W Biofabrication; 2016 Sep; 8(3):035020. PubMed ID: 27634915 [TBL] [Abstract][Full Text] [Related]
43. Architected cellular ceramics with tailored stiffness via direct foam writing. Muth JT; Dixon PG; Woish L; Gibson LJ; Lewis JA Proc Natl Acad Sci U S A; 2017 Feb; 114(8):1832-1837. PubMed ID: 28179570 [TBL] [Abstract][Full Text] [Related]
44. Advanced Polymer Designs for Direct-Ink-Write 3D Printing. Li L; Lin Q; Tang M; Duncan AJE; Ke C Chemistry; 2019 Aug; 25(46):10768-10781. PubMed ID: 31087700 [TBL] [Abstract][Full Text] [Related]
45. 3D Printing of Viscoelastic Suspensions via Digital Light Synthesis for Tough Nanoparticle-Elastomer Composites. Wang K; Pan W; Liu Z; Wallin TJ; van Dover G; Li S; Giannelis EP; Menguc Y; Shepherd RF Adv Mater; 2020 Jun; 32(25):e2001646. PubMed ID: 32419251 [TBL] [Abstract][Full Text] [Related]
46. Machine Learning in Predicting Printable Biomaterial Formulations for Direct Ink Writing. Chen H; Liu Y; Balabani S; Hirayama R; Huang J Research (Wash D C); 2023; 6():0197. PubMed ID: 37469394 [TBL] [Abstract][Full Text] [Related]
47. Ceramic Ink-Jet Printing for Digital Decoration: Physical Constraints for Ink Design. Gardini D; Blosi M; Zanelli C; Dondi M J Nanosci Nanotechnol; 2015 May; 15(5):3552-61. PubMed ID: 26504976 [TBL] [Abstract][Full Text] [Related]
48. Rheological Issues in Carbon-Based Inks for Additive Manufacturing. O'Mahony C; Haq EU; Sillien C; Tofail SAM Micromachines (Basel); 2019 Jan; 10(2):. PubMed ID: 30700026 [TBL] [Abstract][Full Text] [Related]
49. Influence of Selected Product and Process Parameters on Microstructure, Rheological, and Textural Properties of 3D Printed Cookies. Varghese C; Wolodko J; Chen L; Doschak M; Srivastav PP; Roopesh MS Foods; 2020 Jul; 9(7):. PubMed ID: 32664254 [TBL] [Abstract][Full Text] [Related]
51. Direct Ink Writing Glass: A Preliminary Step for Optical Application. Nan B; Gołębiewski P; Buczyński R; Galindo-Rosales FJ; Ferreira JMF Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32244847 [TBL] [Abstract][Full Text] [Related]
52. Coaxial Ceramic Direct Ink Writing on Heterogenous and Rough Surfaces: Investigation of Core-Shell Interactions. Cipollone D; Mena JA; Sabolsky K; Sabolsky EM; Sierros KA ACS Appl Mater Interfaces; 2022 Jun; 14(21):24897-24907. PubMed ID: 35584354 [TBL] [Abstract][Full Text] [Related]
53. Multimaterial 3D Printing of Highly Stretchable Silicone Elastomers. Zhou LY; Gao Q; Fu JZ; Chen QY; Zhu JP; Sun Y; He Y ACS Appl Mater Interfaces; 2019 Jul; 11(26):23573-23583. PubMed ID: 31184459 [TBL] [Abstract][Full Text] [Related]
54. Investigation on characteristics of 3D printing using Nostoc sphaeroides biomass. An YJ; Guo CF; Zhang M; Zhong ZP J Sci Food Agric; 2019 Jan; 99(2):639-646. PubMed ID: 29951991 [TBL] [Abstract][Full Text] [Related]
55. Advanced supramolecular design for direct ink writing of soft materials. Tang M; Zhong Z; Ke C Chem Soc Rev; 2023 Mar; 52(5):1614-1649. PubMed ID: 36779285 [TBL] [Abstract][Full Text] [Related]
57. Effects of rheological properties on ice-templated porous hydroxyapatite ceramics. Zhang Y; Zhou K; Bao Y; Zhang D Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):340-6. PubMed ID: 25428079 [TBL] [Abstract][Full Text] [Related]