These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 28729674)
21. Modeling the Excited States of Biological Chromophores within Many-Body Green's Function Theory. Ma Y; Rohlfing M; Molteni C J Chem Theory Comput; 2010 Jan; 6(1):257-65. PubMed ID: 26614336 [TBL] [Abstract][Full Text] [Related]
22. Ab initio molecular orbital study on the excited states of [2.2]-, [3.3]-, and siloxane-bridged paracyclophanes. Shirai S; Iwata S; Maegawa Y; Tani T; Inagaki S J Phys Chem A; 2012 Oct; 116(41):10194-202. PubMed ID: 23046357 [TBL] [Abstract][Full Text] [Related]
23. Probing the valence orbitals of transition metal-silicon diatomic anions: ZrSi, NbSi, MoSi, PdSi and WSi. Gunaratne KD; Berkdemir C; Harmon CL; Castleman AW Phys Chem Chem Phys; 2013 Apr; 15(16):6068-79. PubMed ID: 23493900 [TBL] [Abstract][Full Text] [Related]
24. Fluorescence and REMPI spectroscopy of jet-cooled isolated 2-phenylindene in the S1 state. Müller C; Klöppel-Riech M; Schröder F; Schroeder J; Troe J J Phys Chem A; 2006 Apr; 110(15):5017-31. PubMed ID: 16610820 [TBL] [Abstract][Full Text] [Related]
25. Accuracy of Calculated Chemical Shifts in Carbon 1s Ionization Energies from Single-Reference ab Initio Methods and Density Functional Theory. Holme A; Børve KJ; Sæthre LJ; Thomas TD J Chem Theory Comput; 2011 Dec; 7(12):4104-14. PubMed ID: 26598356 [TBL] [Abstract][Full Text] [Related]
26. The role of excited Rydberg States in electron transfer dissociation. Sobczyk M; Simons J J Phys Chem B; 2006 Apr; 110(14):7519-27. PubMed ID: 16599533 [TBL] [Abstract][Full Text] [Related]
27. Spectroscopic investigations and potential energy surfaces of the ground and excited electronic states of 1,3-benzodioxan. McCann K; Wagner M; Guerra A; Coronado P; Villarreal JR; Choo J; Kim S; Laane J J Chem Phys; 2009 Jul; 131(4):044302. PubMed ID: 19655862 [TBL] [Abstract][Full Text] [Related]
28. Orbital energies and negative electron affinities from density functional theory: Insight from the integer discontinuity. Teale AM; De Proft F; Tozer DJ J Chem Phys; 2008 Jul; 129(4):044110. PubMed ID: 18681637 [TBL] [Abstract][Full Text] [Related]
29. Why does electron sharing lead to covalent bonding? A variational analysis. Ruedenberg K; Schmidt MW J Comput Chem; 2007 Jan; 28(1):391-410. PubMed ID: 17143869 [TBL] [Abstract][Full Text] [Related]
30. Electronic excited-state energies from a linear response theory based on the ground-state two-electron reduced density matrix. Greenman L; Mazziotti DA J Chem Phys; 2008 Mar; 128(11):114109. PubMed ID: 18361556 [TBL] [Abstract][Full Text] [Related]
31. Ab initio calculation of correlation effects for the O 1s core electron binding energy in MgO. Uhl F; Staemmler V J Phys Condens Matter; 2012 Aug; 24(30):305501. PubMed ID: 22763463 [TBL] [Abstract][Full Text] [Related]
32. A one-electron model for the aqueous electron that includes many-body electron-water polarization: Bulk equilibrium structure, vertical electron binding energy, and optical absorption spectrum. Jacobson LD; Herbert JM J Chem Phys; 2010 Oct; 133(15):154506. PubMed ID: 20969402 [TBL] [Abstract][Full Text] [Related]
33. Predicting excitation energies in warm and hot dense matter. Thelen TQ; Rehn DA; Fontes CJ; Starrett CE Phys Rev E; 2024 Jul; 110(1-2):015207. PubMed ID: 39161004 [TBL] [Abstract][Full Text] [Related]
34. Chemical State Analysis of Phosphorus Performed by X-ray Emission Spectroscopy. Petric M; Bohinc R; Bučar K; Žitnik M; Szlachetko J; Kavčič M Anal Chem; 2015 Jun; 87(11):5632-9. PubMed ID: 25927339 [TBL] [Abstract][Full Text] [Related]
35. Atomistic non-adiabatic dynamics of the LH2 complex with a GPU-accelerated ab initio exciton model. Sisto A; Stross C; van der Kamp MW; O'Connor M; McIntosh-Smith S; Johnson GT; Hohenstein EG; Manby FR; Glowacki DR; Martinez TJ Phys Chem Chem Phys; 2017 Jun; 19(23):14924-14936. PubMed ID: 28430270 [TBL] [Abstract][Full Text] [Related]
36. Toward Ab Initio Optical Spectroscopy of the Fenna-Matthews-Olson Complex. Cole DJ; Chin AW; Hine ND; Haynes PD; Payne MC J Phys Chem Lett; 2013 Dec; 4(24):4206-12. PubMed ID: 26296166 [TBL] [Abstract][Full Text] [Related]
37. Computational studies on the ground and excited states of BrOOBr. Li Y; Vo CK J Chem Phys; 2006 May; 124(20):204309. PubMed ID: 16774334 [TBL] [Abstract][Full Text] [Related]
38. Assessment of Ab Initio and Density Functional Theory Methods for the Excitations of Donor-Acceptor Complexes: The Case of the Benzene-Tetracyanoethylene Model. Xu P; Zhang CR; Wang W; Gong JJ; Liu ZJ; Chen HS Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29642604 [TBL] [Abstract][Full Text] [Related]
39. Ab initio time-domain study of the triplet state in a semiconducting carbon nanotube: intersystem crossing, phosphorescence time, and line width. Habenicht BF; Prezhdo OV J Am Chem Soc; 2012 Sep; 134(38):15648-51. PubMed ID: 22967091 [TBL] [Abstract][Full Text] [Related]
40. The electronic spectrum of the fluoroborane free radical. I. Theoretical calculation of the vibronic energy levels of the ground and first excited electronic states. Sunahori FX; Clouthier DJ; Carter S; Tarroni R J Chem Phys; 2009 Apr; 130(16):164309. PubMed ID: 19405581 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]