BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 28729710)

  • 21. Evaluation of an automated knowledge-based textual summarization system for longitudinal clinical data, in the intensive care domain.
    Goldstein A; Shahar Y; Orenbuch E; Cohen MJ
    Artif Intell Med; 2017 Oct; 82():20-33. PubMed ID: 28958803
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automated ontology generation framework powered by linked biomedical ontologies for disease-drug domain.
    Alobaidi M; Malik KM; Hussain M
    Comput Methods Programs Biomed; 2018 Oct; 165():117-128. PubMed ID: 30337066
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative effectiveness of medical concept embedding for feature engineering in phenotyping.
    Lee J; Liu C; Kim JH; Butler A; Shang N; Pang C; Natarajan K; Ryan P; Ta C; Weng C
    JAMIA Open; 2021 Apr; 4(2):ooab028. PubMed ID: 34142015
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Method to Learn Embedding of a Probabilistic Medical Knowledge Graph: Algorithm Development.
    Li L; Wang P; Wang Y; Wang S; Yan J; Jiang J; Tang B; Wang C; Liu Y
    JMIR Med Inform; 2020 May; 8(5):e17645. PubMed ID: 32436854
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Construction of a Digestive System Tumor Knowledge Graph Based on Chinese Electronic Medical Records: Development and Usability Study.
    Xiu X; Qian Q; Wu S
    JMIR Med Inform; 2020 Oct; 8(10):e18287. PubMed ID: 33026359
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distant supervision for medical concept normalization.
    Pattisapu N; Anand V; Patil S; Palshikar G; Varma V
    J Biomed Inform; 2020 Sep; 109():103522. PubMed ID: 32783923
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development and evaluation of RapTAT: a machine learning system for concept mapping of phrases from medical narratives.
    Gobbel GT; Reeves R; Jayaramaraja S; Giuse D; Speroff T; Brown SH; Elkin PL; Matheny ME
    J Biomed Inform; 2014 Apr; 48():54-65. PubMed ID: 24316051
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Causal knowledge graph construction and evaluation for clinical decision support of diabetic nephropathy.
    Lyu K; Tian Y; Shang Y; Zhou T; Yang Z; Liu Q; Yao X; Zhang P; Chen J; Li J
    J Biomed Inform; 2023 Mar; 139():104298. PubMed ID: 36731730
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Knowledge-analytics synergy in Clinical Decision Support.
    Slonim N; Carmeli B; Goldsteen A; Keller O; Kent C; Rinott R
    Stud Health Technol Inform; 2012; 180():703-7. PubMed ID: 22874282
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Validation of a Crowdsourcing Methodology for Developing a Knowledge Base of Related Problem-Medication Pairs.
    McCoy AB; Wright A; Krousel-Wood M; Thomas EJ; McCoy JA; Sittig DF
    Appl Clin Inform; 2015; 6(2):334-44. PubMed ID: 26171079
    [TBL] [Abstract][Full Text] [Related]  

  • 31. EMR-based medical knowledge representation and inference via Markov random fields and distributed representation learning.
    Zhao C; Jiang J; Guan Y; Guo X; He B
    Artif Intell Med; 2018 May; 87():49-59. PubMed ID: 29691122
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predictive models for pressure ulcers from intensive care unit electronic health records using Bayesian networks.
    Kaewprag P; Newton C; Vermillion B; Hyun S; Huang K; Machiraju R
    BMC Med Inform Decis Mak; 2017 Jul; 17(Suppl 2):65. PubMed ID: 28699545
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rare disease knowledge enrichment through a data-driven approach.
    Shen F; Zhao Y; Wang L; Mojarad MR; Wang Y; Liu S; Liu H
    BMC Med Inform Decis Mak; 2019 Feb; 19(1):32. PubMed ID: 30764825
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Knowledge-Based Query Construction Using the CDSS Knowledge Base for Efficient Evidence Retrieval.
    Afzal M; Hussain M; Ali T; Hussain J; Khan WA; Lee S; Kang BH
    Sensors (Basel); 2015 Aug; 15(9):21294-314. PubMed ID: 26343669
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automatic approach for constructing a knowledge graph of knee osteoarthritis in Chinese.
    Li X; Liu H; Zhao X; Zhang G; Xing C
    Health Inf Sci Syst; 2020 Dec; 8(1):12. PubMed ID: 32175080
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cognitive IT-systems for big data analysis in medicine.
    Isakova J
    Int J Risk Saf Med; 2015; 27 Suppl 1():S108-9. PubMed ID: 26639685
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Knowledge graph prediction of unknown adverse drug reactions and validation in electronic health records.
    Bean DM; Wu H; Iqbal E; Dzahini O; Ibrahim ZM; Broadbent M; Stewart R; Dobson RJB
    Sci Rep; 2017 Nov; 7(1):16416. PubMed ID: 29180758
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Max-margin weight learning for medical knowledge network.
    Jiang J; Xie J; Zhao C; Su J; Guan Y; Yu Q
    Comput Methods Programs Biomed; 2018 Mar; 156():179-190. PubMed ID: 29428070
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Annotation methods to develop and evaluate an expert system based on natural language processing in electronic medical records.
    Gicquel Q; Tvardik N; Bouvry C; Kergourlay I; Bittar A; Segond F; Darmoni S; Metzger MH
    Stud Health Technol Inform; 2015; 216():1067. PubMed ID: 26262366
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Construction and application of Chinese breast cancer knowledge graph based on multi-source heterogeneous data.
    An B
    Math Biosci Eng; 2023 Feb; 20(4):6776-6799. PubMed ID: 37161128
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.