These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 28730430)

  • 1. Computational Generation of RNA Nanorings.
    Sharan R; Bindewald E; Kasprzak WK; Shapiro BA
    Methods Mol Biol; 2017; 1632():19-32. PubMed ID: 28730430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ring Catalog: A resource for designing self-assembling RNA nanostructures.
    Parlea L; Bindewald E; Sharan R; Bartlett N; Moriarty D; Oliver J; Afonin KA; Shapiro BA
    Methods; 2016 Jul; 103():128-37. PubMed ID: 27090005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational strategies for the automated design of RNA nanoscale structures from building blocks using NanoTiler.
    Bindewald E; Grunewald C; Boyle B; O'Connor M; Shapiro BA
    J Mol Graph Model; 2008 Oct; 27(3):299-308. PubMed ID: 18838281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3dRNA v2.0: An Updated Web Server for RNA 3D Structure Prediction.
    Wang J; Wang J; Huang Y; Xiao Y
    Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31450739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated RNA 3D Structure Prediction with RNAComposer.
    Biesiada M; Purzycka KJ; Szachniuk M; Blazewicz J; Adamiak RW
    Methods Mol Biol; 2016; 1490():199-215. PubMed ID: 27665601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crumple: An Efficient Tool to Explore Thoroughly the RNA Folding Landscape.
    Guerra I; Schroeder SJ
    Methods Mol Biol; 2016; 1490():1-14. PubMed ID: 27665589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Throughput Nuclease Probing of RNA Structures Using FragSeq.
    Uzilov AV; Underwood JG
    Methods Mol Biol; 2016; 1490():105-34. PubMed ID: 27665596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy-based RNA consensus secondary structure prediction in multiple sequence alignments.
    Washietl S; Bernhart SH; Kellis M
    Methods Mol Biol; 2014; 1097():125-41. PubMed ID: 24639158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA 3D Structure Modeling by Combination of Template-Based Method ModeRNA, Template-Free Folding with SimRNA, and Refinement with QRNAS.
    Piatkowski P; Kasprzak JM; Kumar D; Magnus M; Chojnowski G; Bujnicki JM
    Methods Mol Biol; 2016; 1490():217-35. PubMed ID: 27665602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring Alternative RNA Structure Sets Using MC-Flashfold and db2cm.
    Dallaire P; Major F
    Methods Mol Biol; 2016; 1490():237-51. PubMed ID: 27665603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification and Identification of Non-canonical Base Pairs and Structural Motifs.
    Sarrazin-Gendron R; WaldispĆ¼hl J; Reinharz V
    Methods Mol Biol; 2024; 2726():143-168. PubMed ID: 38780731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining structure probing data on RNA mutants with evolutionary information reveals RNA-binding interfaces.
    Reinharz V; Ponty Y; WaldispĆ¼hl J
    Nucleic Acids Res; 2016 Jun; 44(11):e104. PubMed ID: 27095200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting RNA-RNA Interactions Using RNAstructure.
    DiChiacchio L; Mathews DH
    Methods Mol Biol; 2016; 1490():51-62. PubMed ID: 27665592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling Small Noncanonical RNA Motifs with the Rosetta FARFAR Server.
    Yesselman JD; Das R
    Methods Mol Biol; 2016; 1490():187-98. PubMed ID: 27665600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of consensus structural motifs in a family of coregulated RNA sequences.
    Hu YJ
    Nucleic Acids Res; 2002 Sep; 30(17):3886-93. PubMed ID: 12202774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction and visualization of structural switches in RNA.
    Giegerich R; Haase D; Rehmsmeier M
    Pac Symp Biocomput; 1999; ():126-37. PubMed ID: 10380191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An algorithmic game-theory approach for coarse-grain prediction of RNA 3D structure.
    Lamiable A; Quessette F; Vial S; Barth D; Denise A
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(1):193-9. PubMed ID: 23702555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. VfoldLA: A web server for loop assembly-based prediction of putative 3D RNA structures.
    Xu X; Zhao C; Chen SJ
    J Struct Biol; 2019 Sep; 207(3):235-240. PubMed ID: 31173857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CompAnnotate: a comparative approach to annotate base-pairing interactions in RNA 3D structures.
    Islam S; Ge P; Zhang S
    Nucleic Acids Res; 2017 Aug; 45(14):e136. PubMed ID: 28641399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA Secondary Structure Modeling Following the IPANEMAP Workflow.
    Allouche D; De Bisschop G; Saaidi A; Hardouin P; du Moutier FL; Ponty Y; Bruno S
    Methods Mol Biol; 2024; 2726():85-104. PubMed ID: 38780728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.