These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28730449)

  • 1. Rational Engineering of a Modular Group I Ribozyme to Control Its Activity by Self-Dimerization.
    Tanaka T; Ikawa Y; Matsumura S
    Methods Mol Biol; 2017; 1632():325-340. PubMed ID: 28730449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tecto-GIRz: Engineered Group I Ribozyme the Catalytic Ability of Which Can Be Controlled by Self-Dimerization.
    Tanaka T; Matsumura S; Furuta H; Ikawa Y
    Chembiochem; 2016 Aug; 17(15):1448-55. PubMed ID: 27247120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Installation of orthogonality to the interface that assembles two modular domains in the Tetrahymena group I ribozyme.
    Tanaka T; Furuta H; Ikawa Y
    J Biosci Bioeng; 2014 Apr; 117(4):407-12. PubMed ID: 24216461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterodimerization of Group I Ribozymes Enabling Exon Recombination through Pairs of Cooperative trans-Splicing Reactions.
    Tanaka T; Hirata Y; Tominaga Y; Furuta H; Matsumura S; Ikawa Y
    Chembiochem; 2017 Aug; 18(16):1659-1667. PubMed ID: 28556398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the newly constructed domains that replace P5abc within the Tetrahymena ribozyme.
    Ikawa Y; Shiraishi H; Inoue T
    FEBS Lett; 1996 Sep; 394(1):5-8. PubMed ID: 8925926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Requirements for alternative forms of the activator domain, P5abc, in the Tetrahymena ribozyme.
    Naito Y; Shiraishi H; Inoue T
    FEBS Lett; 2000 Jan; 466(2-3):273-8. PubMed ID: 10682842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deletion of the P5abc peripheral element accelerates early and late folding steps of the Tetrahymena group I ribozyme.
    Russell R; Tijerina P; Chadee AB; Bhaskaran H
    Biochemistry; 2007 May; 46(17):4951-61. PubMed ID: 17419589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Programmable formation of catalytic RNA triangles and squares by assembling modular RNA enzymes.
    Oi H; Fujita D; Suzuki Y; Sugiyama H; Endo M; Matsumura S; Ikawa Y
    J Biochem; 2017 May; 161(5):451-462. PubMed ID: 28096453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The P5abc peripheral element facilitates preorganization of the tetrahymena group I ribozyme for catalysis.
    Engelhardt MA; Doherty EA; Knitt DS; Doudna JA; Herschlag D
    Biochemistry; 2000 Mar; 39(10):2639-51. PubMed ID: 10704214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oligomerization of a modular ribozyme assembly of which is controlled by a programmable RNA-RNA interface between two structural modules.
    Tsuruga R; Uehara N; Suzuki Y; Furuta H; Sugiyama H; Endo M; Matsumura S; Ikawa Y
    J Biosci Bioeng; 2019 Oct; 128(4):410-415. PubMed ID: 31109874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of the nucleotides in the A-rich bulge of the Tetrahymena ribozyme responsible for an efficient self-splicing reaction.
    Ikawa Y; Okada A; Imahori H; Shiraishi H; Inoue T
    J Biochem; 1997 Oct; 122(4):878-82. PubMed ID: 9399595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Box-shaped ribozyme octamer formed by face-to-face dimerization of a pair of square-shaped ribozyme tetramers.
    Islam MD; Hidaka K; Suzuki Y; Sugiyama H; Endo M; Matsumura S; Ikawa Y
    J Biosci Bioeng; 2022 Sep; 134(3):195-202. PubMed ID: 35810135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trans-activation of the Tetrahymena ribozyme by its P2-2.1 domains.
    Ikawa Y; Shiraishi H; Inoue T
    J Biochem; 1998 Mar; 123(3):528-33. PubMed ID: 9538238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering a family of synthetic splicing ribozymes.
    Che AJ; Knight TF
    Nucleic Acids Res; 2010 May; 38(8):2748-55. PubMed ID: 20299341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of a GNRA tetraloop in P5abc can disrupt an interdomain interaction in the Tetrahymena group I ribozyme.
    Zheng M; Wu M; Tinoco I
    Proc Natl Acad Sci U S A; 2001 Mar; 98(7):3695-700. PubMed ID: 11274387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic investigations of a ribozyme derived from the Tetrahymena group I intron: insights into catalysis and the second step of self-splicing.
    Mei R; Herschlag D
    Biochemistry; 1996 May; 35(18):5796-809. PubMed ID: 8639540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic RNA nano-objects formed by self-assembly of group I ribozyme dimers serving as unit structures.
    Kiyooka R; Akagi J; Hidaka K; Sugiyama H; Endo M; Matsumura S; Ikawa Y
    J Biosci Bioeng; 2020 Sep; 130(3):253-259. PubMed ID: 32451246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and development of a catalytic ribonucleoprotein.
    Atsumi S; Ikawa Y; Shiraishi H; Inoue T
    EMBO J; 2001 Oct; 20(19):5453-60. PubMed ID: 11574477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation of Tetrahymena rRNA self-splicing by cis-platin proceeds through dissociable complexes.
    Danenberg PV; Shea LC; Danenberg KD; Horikoshi T
    Nucleic Acids Res; 1991 Jun; 19(11):3123-8. PubMed ID: 1905401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Putative intermediary stages for the molecular evolution from a ribozyme to a catalytic RNP.
    Ikawa Y; Tsuda K; Matsumura S; Atsumi S; Inoue T
    Nucleic Acids Res; 2003 Mar; 31(5):1488-96. PubMed ID: 12595557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.