These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 28730475)

  • 1. Characterization of Ligand Binding to Pseudokinases Using a Thermal Shift Assay.
    Lucet IS; Murphy JM
    Methods Mol Biol; 2017; 1636():91-104. PubMed ID: 28730475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of the pseudokinase VRK3 reveals a degraded catalytic site, a highly conserved kinase fold, and a putative regulatory binding site.
    Scheeff ED; Eswaran J; Bunkoczi G; Knapp S; Manning G
    Structure; 2009 Jan; 17(1):128-38. PubMed ID: 19141289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleotide-binding mechanisms in pseudokinases.
    Hammarén HM; Virtanen AT; Silvennoinen O
    Biosci Rep; 2015 Nov; 36(1):e00282. PubMed ID: 26589967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP binding to the pseudokinase domain of JAK2 is critical for pathogenic activation.
    Hammarén HM; Ungureanu D; Grisouard J; Skoda RC; Hubbard SR; Silvennoinen O
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4642-7. PubMed ID: 25825724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein thermal shifts to identify low molecular weight fragments.
    Kranz JK; Schalk-Hihi C
    Methods Enzymol; 2011; 493():277-98. PubMed ID: 21371595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of protein stability and ligand interactions by thermal shift assay.
    Huynh K; Partch CL
    Curr Protoc Protein Sci; 2015 Feb; 79():28.9.1-28.9.14. PubMed ID: 25640896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A robust methodology to subclassify pseudokinases based on their nucleotide-binding properties.
    Murphy JM; Zhang Q; Young SN; Reese ML; Bailey FP; Eyers PA; Ungureanu D; Hammaren H; Silvennoinen O; Varghese LN; Chen K; Tripaydonis A; Jura N; Fukuda K; Qin J; Nimchuk Z; Mudgett MB; Elowe S; Gee CL; Liu L; Daly RJ; Manning G; Babon JJ; Lucet IS
    Biochem J; 2014 Jan; 457(2):323-34. PubMed ID: 24107129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Day of the dead: pseudokinases and pseudophosphatases in physiology and disease.
    Reiterer V; Eyers PA; Farhan H
    Trends Cell Biol; 2014 Sep; 24(9):489-505. PubMed ID: 24818526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A historical overview of protein kinases and their targeted small molecule inhibitors.
    Roskoski R
    Pharmacol Res; 2015 Oct; 100():1-23. PubMed ID: 26207888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prospects for pharmacological targeting of pseudokinases.
    Kung JE; Jura N
    Nat Rev Drug Discov; 2019 Jul; 18(7):501-526. PubMed ID: 30850748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular thermal shift assay (CETSA) for determining the drug binding affinity using Ba/F3 clones stably expressing receptor pseudokinases.
    Karvonen H; Raivola J; Ungureanu D
    Methods Enzymol; 2022; 667():339-363. PubMed ID: 35525546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal Shift Assay for Exploring Interactions Between Fatty Acid-Binding Protein and Inhibitors.
    Hao J
    Methods Mol Biol; 2021; 2261():395-409. PubMed ID: 33421003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic analysis of ligand-induced changes in protein thermal unfolding applied to high-throughput determination of ligand affinities with extrinsic fluorescent dyes.
    Layton CJ; Hellinga HW
    Biochemistry; 2010 Dec; 49(51):10831-41. PubMed ID: 21050007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Alternative Thiol-Reactive Dye to Analyze Ligand Interactions with the Chemokine Receptor CXCR2 Using a New Thermal Shift Assay Format.
    Bergsdorf C; Fiez-Vandal C; Sykes DA; Bernet P; Aussenac S; Charlton SJ; Schopfer U; Ottl J; Duckely M
    J Biomol Screen; 2016 Mar; 21(3):243-51. PubMed ID: 26644402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the volume changes induced by ligand binding to heat shock protein 90 using high-pressure denaturation.
    Toleikis Z; Cimmperman P; Petrauskas V; Matulis D
    Anal Biochem; 2011 Jun; 413(2):171-8. PubMed ID: 21345327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Techniques to examine nucleotide binding by pseudokinases.
    Lucet IS; Babon JJ; Murphy JM
    Biochem Soc Trans; 2013 Aug; 41(4):975-80. PubMed ID: 23863166
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the evolution of divergent nucleotide-binding mechanisms among pseudokinases revealed by crystal structures of human and mouse MLKL.
    Murphy JM; Lucet IS; Hildebrand JM; Tanzer MC; Young SN; Sharma P; Lessene G; Alexander WS; Babon JJ; Silke J; Czabotar PE
    Biochem J; 2014 Feb; 457(3):369-77. PubMed ID: 24219132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and characterization of TYK2 pseudokinase domain stabilizers that allosterically inhibit TYK2 signaling.
    Locke GA; Muckelbauer J; Tokarski JS; Barbieri CM; Belić S; Falk B; Tredup J; Wang YK
    Methods Enzymol; 2022; 667():685-727. PubMed ID: 35525559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pseudokinases: Prospects for expanding the therapeutic targets armamentarium.
    Devang N; Pani A; Rajanikant GK
    Adv Protein Chem Struct Biol; 2021; 124():121-185. PubMed ID: 33632464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Looking lively: emerging principles of pseudokinase signaling.
    Sheetz JB; Lemmon MA
    Trends Biochem Sci; 2022 Oct; 47(10):875-891. PubMed ID: 35585008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.