BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 28730476)

  • 1. Proteomic Profiling of Protein Kinase Inhibitor Targets by Mass Spectrometry.
    Golkowski M; Maly DJ; Ong SE
    Methods Mol Biol; 2017; 1636():105-117. PubMed ID: 28730476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Advances in high-throughput proteomic analysis].
    Wu Q; Sui X; Tian R
    Se Pu; 2021 Feb; 39(2):112-117. PubMed ID: 34227342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiplex imaging and cellular target identification of kinase inhibitors via an affinity-based proteome profiling approach.
    Su Y; Pan S; Li Z; Li L; Wu X; Hao P; Sze SK; Yao SQ
    Sci Rep; 2015 Jan; 5():7724. PubMed ID: 25579846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinobead and Single-Shot LC-MS Profiling Identifies Selective PKD Inhibitors.
    Golkowski M; Vidadala RS; Lombard CK; Suh HW; Maly DJ; Ong SE
    J Proteome Res; 2017 Mar; 16(3):1216-1227. PubMed ID: 28102076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An off-line high pH reversed-phase fractionation and nano-liquid chromatography-mass spectrometry method for global proteomic profiling of cell lines.
    Wang H; Sun S; Zhang Y; Chen S; Liu P; Liu B
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Jan; 974():90-5. PubMed ID: 25463202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative Proteomic Analysis of the Human Nucleolus.
    Bensaddek D; Nicolas A; Lamond AI
    Methods Mol Biol; 2016; 1455():249-62. PubMed ID: 27576725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drug Target Identification Using an iTRAQ-Based Quantitative Chemical Proteomics Approach-Based on a Target Profiling Study of Andrographolide.
    Wang J; Wong YK; Zhang J; Lee YM; Hua ZC; Shen HM; Lin Q
    Methods Enzymol; 2017; 586():291-309. PubMed ID: 28137568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid Isolation of Extracellular Vesicles from Blood Plasma with Size-Exclusion Chromatography Followed by Mass Spectrometry-Based Proteomic Profiling.
    Kreimer S; Ivanov AR
    Methods Mol Biol; 2017; 1660():295-302. PubMed ID: 28828666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small Molecule Interactome Mapping by Photo-Affinity Labeling (SIM-PAL) to Identify Binding Sites of Small Molecules on a Proteome-Wide Scale.
    Flaxman HA; Miyamoto DK; Woo CM
    Curr Protoc Chem Biol; 2019 Dec; 11(4):e75. PubMed ID: 31763793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Profiling Cell Lines Nuclear Sub-proteome.
    Poersch A; Maria AG; Palma CS; Grassi ML; Albuquerque D; Thomé CH; Faça VM
    Methods Mol Biol; 2017; 1550():35-46. PubMed ID: 28188521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The proteomic reactor facilitates the analysis of affinity-purified proteins by mass spectrometry: application for identifying ubiquitinated proteins in human cells.
    Vasilescu J; Zweitzig DR; Denis NJ; Smith JC; Ethier M; Haines DS; Figeys D
    J Proteome Res; 2007 Jan; 6(1):298-305. PubMed ID: 17203973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mass Spectrometry Profiling of Pituitary Glands.
    Krishnamurthy D; Rahmoune H; Guest PC
    Methods Mol Biol; 2018; 1735():439-447. PubMed ID: 29380334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-Scale and Deep Quantitative Proteome Profiling Using Isobaric Labeling Coupled with Two-Dimensional LC-MS/MS.
    Gritsenko MA; Xu Z; Liu T; Smith RD
    Methods Mol Biol; 2016; 1410():237-47. PubMed ID: 26867748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Digestion, Purification, and Enrichment of Protein Samples for Mass Spectrometry.
    Hedrick VE; LaLand MN; Nakayasu ES; Paul LN
    Curr Protoc Chem Biol; 2015 Sep; 7(3):201-222. PubMed ID: 26331527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emerging Affinity-Based Proteomic Technologies for Large-Scale Plasma Profiling in Cardiovascular Disease.
    Smith JG; Gerszten RE
    Circulation; 2017 Apr; 135(17):1651-1664. PubMed ID: 28438806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the novel broad-spectrum kinase inhibitor CTx-0294885 as an affinity reagent for mass spectrometry-based kinome profiling.
    Zhang L; Holmes IP; Hochgräfe F; Walker SR; Ali NA; Humphrey ES; Wu J; de Silva M; Kersten WJ; Connor T; Falk H; Allan L; Street IP; Bentley JD; Pilling PA; Monahan BJ; Peat TS; Daly RJ
    J Proteome Res; 2013 Jul; 12(7):3104-16. PubMed ID: 23692254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shotgun Proteomics and Mass Spectrometry as a Tool for Protein Identification and Profiling of Bio-Carrier-Based Therapeutics on Human Cancer Cells.
    Abidin SAZ; Othman I; Naidu R
    Methods Mol Biol; 2021; 2211():233-240. PubMed ID: 33336281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimized chemical proteomics assay for kinase inhibitor profiling.
    Médard G; Pachl F; Ruprecht B; Klaeger S; Heinzlmeir S; Helm D; Qiao H; Ku X; Wilhelm M; Kuehne T; Wu Z; Dittmann A; Hopf C; Kramer K; Kuster B
    J Proteome Res; 2015 Mar; 14(3):1574-86. PubMed ID: 25660469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in computational analysis of mass spectrometry for proteomic profiling.
    Sun CS; Markey MK
    J Mass Spectrom; 2011 May; 46(5):443-56. PubMed ID: 21500303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow field-flow fractionation: a pre-analytical method for proteomics.
    Reschiglian P; Moon MH
    J Proteomics; 2008 Aug; 71(3):265-76. PubMed ID: 18602503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.