BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 28730483)

  • 1. Characterization of the Phospho-Adhesome by Mass Spectrometry-Based Proteomics.
    Robertson J; Humphries JD; Paul NR; Warwood S; Knight D; Byron A; Humphries MJ
    Methods Mol Biol; 2017; 1636():235-251. PubMed ID: 28730483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Label-Free Phosphoproteomic Approach for Kinase Signaling Analysis.
    Wilkes E; Cutillas PR
    Methods Mol Biol; 2017; 1636():199-217. PubMed ID: 28730481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defining the phospho-adhesome through the phosphoproteomic analysis of integrin signalling.
    Robertson J; Jacquemet G; Byron A; Jones MC; Warwood S; Selley JN; Knight D; Humphries JD; Humphries MJ
    Nat Commun; 2015 Feb; 6():6265. PubMed ID: 25677187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative phosphoproteome analysis of Streptomyces coelicolor by immobilized zirconium (IV) affinity chromatography and mass spectrometry reveals novel regulated protein phosphorylation sites and sequence motifs.
    Alonso-Fernández S; Arribas-Díez I; Fernández-García G; González-Quiñónez N; Jensen ON; Manteca A
    J Proteomics; 2022 Oct; 269():104719. PubMed ID: 36089190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A proteomics view on integrin-mediated adhesions.
    Manninen A; Varjosalo M
    Proteomics; 2017 Feb; 17(3-4):. PubMed ID: 27723259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly.
    Horton ER; Byron A; Askari JA; Ng DHJ; Millon-Frémillon A; Robertson J; Koper EJ; Paul NR; Warwood S; Knight D; Humphries JD; Humphries MJ
    Nat Cell Biol; 2015 Dec; 17(12):1577-1587. PubMed ID: 26479319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphopeptide enrichment using offline titanium dioxide columns for phosphoproteomics.
    Yu LR; Veenstra T
    Methods Mol Biol; 2013; 1002():93-103. PubMed ID: 23625397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid Shotgun Phosphoproteomics Analysis.
    Carrera M; Cañas B; Lopez-Ferrer D
    Methods Mol Biol; 2021; 2259():259-268. PubMed ID: 33687721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tandem metal-oxide affinity chromatography for enhanced depth of phosphoproteome analysis.
    Beckers GJ; Hoehenwarter W; Röhrig H; Conrath U; Weckwerth W
    Methods Mol Biol; 2014; 1072():621-32. PubMed ID: 24136551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Universal Sample Preparation Workflow for Plant Phosphoproteomic Profiling.
    Hsu CC; Arrington JV; Tao WA
    Methods Mol Biol; 2021; 2358():93-103. PubMed ID: 34270048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome.
    Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ
    Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant Phosphopeptide Identification and Label-Free Quantification by MaxQuant and Proteome Discoverer Software.
    Li S; Zan H; Zhu Z; Lu D; Krall L
    Methods Mol Biol; 2021; 2358():179-187. PubMed ID: 34270055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A review on recent trends in the phosphoproteomics workflow. From sample preparation to data analysis.
    Urban J
    Anal Chim Acta; 2022 Mar; 1199():338857. PubMed ID: 35227377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiplexed quantitative phosphoproteomics of cell line and tissue samples.
    Kreuzer J; Edwards A; Haas W
    Methods Enzymol; 2019; 626():41-65. PubMed ID: 31606085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomics and phosphoproteomics of C
    Perron N; Tan B; Dufresne CP; Chen S
    Methods Enzymol; 2022; 676():347-368. PubMed ID: 36280357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical strategies in mass spectrometry-based phosphoproteomics.
    Rosenqvist H; Ye J; Jensen ON
    Methods Mol Biol; 2011; 753():183-213. PubMed ID: 21604124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a TiO₂ enrichment method for label-free quantitative phosphoproteomics.
    Montoya A; Beltran L; Casado P; Rodríguez-Prados JC; Cutillas PR
    Methods; 2011 Aug; 54(4):370-8. PubMed ID: 21316455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass Spectrometry-Based Proteomics for Quantifying DNA Damage-Induced Phosphorylation.
    Borisova ME; Wagner SA; Beli P
    Methods Mol Biol; 2017; 1599():215-227. PubMed ID: 28477122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global Identification of ERK Substrates by Phosphoproteomics Based on IMAC and 2D-DIGE.
    Kosako H; Motani K
    Methods Mol Biol; 2017; 1487():137-149. PubMed ID: 27924564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated workflow for quantitative phosphoproteomic analysis of the selected brain structures in development of morphine dependence.
    Sucharski F; Noga MJ; Suder P; Kotlińska J; Silberring J
    Pharmacol Rep; 2014 Dec; 66(6):1003-10. PubMed ID: 25443728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.