These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 28730484)

  • 61. FAIMS and Phosphoproteomics of Fibroblast Growth Factor Signaling: Enhanced Identification of Multiply Phosphorylated Peptides.
    Zhao H; Cunningham DL; Creese AJ; Heath JK; Cooper HJ
    J Proteome Res; 2015 Dec; 14(12):5077-87. PubMed ID: 26503514
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Rapid and reproducible single-stage phosphopeptide enrichment of complex peptide mixtures: application to general and phosphotyrosine-specific phosphoproteomics experiments.
    Kettenbach AN; Gerber SA
    Anal Chem; 2011 Oct; 83(20):7635-44. PubMed ID: 21899308
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Identification of the phosphotyrosine proteome from thrombin activated platelets.
    Maguire PB; Wynne KJ; Harney DF; O'Donoghue NM; Stephens G; Fitzgerald DJ
    Proteomics; 2002 Jun; 2(6):642-8. PubMed ID: 12112843
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Identification of Phosphorylated Cyclin-Dependent Kinase 1 Associated with Colorectal Cancer Survival Using Label-Free Quantitative Analyses.
    Lin PC; Yang YF; Tyan YC; Hsiao ES; Chu PC; Lee CT; Lee JC; Chen YM; Liao PC
    PLoS One; 2016; 11(7):e0158844. PubMed ID: 27383761
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Subproteomics analysis of phosphorylated proteins: application to the study of B-lymphoblasts from a patient with Scott syndrome.
    Imam-Sghiouar N; Laude-Lemaire I; Labas V; Pflieger D; Le Caër JP; Caron M; Nabias DK; Joubert-Caron R
    Proteomics; 2002 Jul; 2(7):828-38. PubMed ID: 12124928
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Global analysis of protein phosphorylation networks in insulin signaling by sequential enrichment of phosphoproteins and phosphopeptides.
    Fedjaev M; Parmar A; Xu Y; Vyetrogon K; Difalco MR; Ashmarina M; Nifant'ev I; Posner BI; Pshezhetsky AV
    Mol Biosyst; 2012 Apr; 8(5):1461-71. PubMed ID: 22362066
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The phosphoproteome of the adenovirus type 2 virion.
    Bergström Lind S; Artemenko KA; Elfineh L; Zhao Y; Bergquist J; Pettersson U
    Virology; 2012 Nov; 433(1):253-61. PubMed ID: 22939182
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Matrix assisted laser desorption/ionization-time of flight-mass spectrometry analysis of proteins detected by anti-phosphotyrosine antibody on two-dimensional-gels of fibrolast cell lysates after tumor necrosis factor-alpha stimulation.
    Yanagida M; Miura Y; Yagasaki K; Taoka M; Isobe T; Takahashi N
    Electrophoresis; 2000 May; 21(9):1890-8. PubMed ID: 10870974
    [TBL] [Abstract][Full Text] [Related]  

  • 69. One-Step SH2 Superbinder-Based Approach for Sensitive Analysis of Tyrosine Phosphoproteome.
    Yao Y; Wang Y; Wang S; Liu X; Liu Z; Li Y; Fang Z; Mao J; Zheng Y; Ye M
    J Proteome Res; 2019 Apr; 18(4):1870-1879. PubMed ID: 30875230
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Phosphotyrosine enrichment identifies focal adhesion kinase and other tyrosine kinases for targeting in canine hemangiosarcoma.
    Marley K; Maier CS; Helfand SC
    Vet Comp Oncol; 2012 Sep; 10(3):214-22. PubMed ID: 22487216
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Identification of phosphoproteins and their phosphorylation sites in the WEHI-231 B lymphoma cell line.
    Shu H; Chen S; Bi Q; Mumby M; Brekken DL
    Mol Cell Proteomics; 2004 Mar; 3(3):279-86. PubMed ID: 14729942
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Identification and quantitation of signal molecule-dependent protein phosphorylation.
    Groen A; Thomas L; Lilley K; Marondedze C
    Methods Mol Biol; 2013; 1016():121-37. PubMed ID: 23681576
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Phosphotyrosine-based-phosphoproteomics scaled-down to biopsy level for analysis of individual tumor biology and treatment selection.
    Labots M; van der Mijn JC; Beekhof R; Piersma SR; de Goeij-de Haas RR; Pham TV; Knol JC; Dekker H; van Grieken NCT; Verheul HMW; Jiménez CR
    J Proteomics; 2017 Jun; 162():99-107. PubMed ID: 28442448
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The Escherichia coli phosphotyrosine proteome relates to core pathways and virulence.
    Hansen AM; Chaerkady R; Sharma J; Díaz-Mejía JJ; Tyagi N; Renuse S; Jacob HK; Pinto SM; Sahasrabuddhe NA; Kim MS; Delanghe B; Srinivasan N; Emili A; Kaper JB; Pandey A
    PLoS Pathog; 2013; 9(6):e1003403. PubMed ID: 23785281
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Global phosphotyrosine proteomics identifies PKCδ as a marker of responsiveness to Src inhibition in colorectal cancer.
    McKinley ET; Liu H; McDonald WH; Luo W; Zhao P; Coffey RJ; Hanks SK; Manning HC
    PLoS One; 2013; 8(11):e80207. PubMed ID: 24260357
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Pleckstrin homology and phosphotyrosine-binding domain-dependent membrane association and tyrosine phosphorylation of Dok-4, an inhibitory adapter molecule expressed in epithelial cells.
    Bedirian A; Baldwin C; Abe J; Takano T; Lemay S
    J Biol Chem; 2004 Apr; 279(18):19335-49. PubMed ID: 14963042
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Quantitative phosphoproteome analysis of Streptomyces coelicolor by immobilized zirconium (IV) affinity chromatography and mass spectrometry reveals novel regulated protein phosphorylation sites and sequence motifs.
    Alonso-Fernández S; Arribas-Díez I; Fernández-García G; González-Quiñónez N; Jensen ON; Manteca A
    J Proteomics; 2022 Oct; 269():104719. PubMed ID: 36089190
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Modified SH2 domain to phototrap and identify phosphotyrosine proteins from subcellular sites within cells.
    Uezu A; Okada H; Murakoshi H; del Vescovo CD; Yasuda R; Diviani D; Soderling SH
    Proc Natl Acad Sci U S A; 2012 Oct; 109(43):E2929-38. PubMed ID: 23027962
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Identification of a novel immunoreceptor tyrosine-based activation motif-containing molecule, STAM2, by mass spectrometry and its involvement in growth factor and cytokine receptor signaling pathways.
    Pandey A; Fernandez MM; Steen H; Blagoev B; Nielsen MM; Roche S; Mann M; Lodish HF
    J Biol Chem; 2000 Dec; 275(49):38633-9. PubMed ID: 10993906
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Comparative proteome analysis across non-small cell lung cancer cell lines.
    Grundner-Culemann K; Dybowski JN; Klammer M; Tebbe A; Schaab C; Daub H
    J Proteomics; 2016 Jan; 130():1-10. PubMed ID: 26361996
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.