These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 2873057)
1. Free fatty acids decouple oxidative phosphorylation by dissipating intramembranal protons without inhibiting ATP synthesis driven by the proton electrochemical gradient. Rottenberg H; Steiner-Mordoch S FEBS Lett; 1986 Jul; 202(2):314-8. PubMed ID: 2873057 [TBL] [Abstract][Full Text] [Related]
2. Current-voltage relationships for proton flow through the F0 sector of the ATP-synthase, carbonylcyanide-p-trifluoromethoxyphenylhydrazone or leak pathways in submitochondrial particles. Seren S; Caporin G; Galiazzo F; Lippe G; Ferguson SJ; Sorgato MC Eur J Biochem; 1985 Oct; 152(2):373-9. PubMed ID: 2865136 [TBL] [Abstract][Full Text] [Related]
3. Kinetics of adenosine triphosphate synthesis in bovine heart submitochondrial particles. Thayer WS; Hinkle PC J Biol Chem; 1975 Jul; 250(14):5336. PubMed ID: 167010 [TBL] [Abstract][Full Text] [Related]
4. Fatty acid uncoupling of oxidative phosphorylation in rat liver mitochondria. Rottenberg H; Hashimoto K Biochemistry; 1986 Apr; 25(7):1747-55. PubMed ID: 2423115 [TBL] [Abstract][Full Text] [Related]
5. Partial uncoupling, or inhibition of electron transport rate, have equivalent effects on the relationship between the rate of ATP synthesis and proton-motive force in submitochondrial particles. Catia Sorgato M; Lippe G; Seren S; Ferguson SJ FEBS Lett; 1985 Feb; 181(2):323-7. PubMed ID: 2982663 [TBL] [Abstract][Full Text] [Related]
6. Uncoupling effect of fatty acids on heart muscle mitochondria and submitochondrial particles. Dedukhova VI; Mokhova EN; Skulachev VP; Starkov AA; Arrigoni-Martelli E; Bobyleva VA FEBS Lett; 1991 Dec; 295(1-3):51-4. PubMed ID: 1765167 [TBL] [Abstract][Full Text] [Related]
7. Uncoupling of oxidative phosphorylation: different effects of lipophilic weak acids and electrogenic ionophores on the kinetics of ATP synthesis. Matsuno-Yagi A; Hatefi Y Biochemistry; 1989 May; 28(10):4367-74. PubMed ID: 2475167 [TBL] [Abstract][Full Text] [Related]
8. Oxidative phosphorylation and the Pi-ATP exchange reaction of submitochondrial particles under the influence of organic solvents. Tuena de Gómez-Puyou M; Ayala G; Darszon A; Gómez-Puyou A J Biol Chem; 1984 Aug; 259(15):9472-8. PubMed ID: 6746656 [TBL] [Abstract][Full Text] [Related]
9. Uncoupling of oxidative phosphorylation. 1. Protonophoric effects account only partially for uncoupling. Luvisetto S; Pietrobon D; Azzone GF Biochemistry; 1987 Nov; 26(23):7332-8. PubMed ID: 2827753 [TBL] [Abstract][Full Text] [Related]
10. Reconstitution of bacteriorhodopsin and ATP synthase from Micrococcus luteus into liposomes of the purified main tetraether lipid from Thermoplasma acidophilum: proton conductance and light-driven ATP synthesis. Freisleben HJ; Zwicker K; Jezek P; John G; Bettin-Bogutzki A; Ring K; Nawroth T Chem Phys Lipids; 1995 Nov; 78(2):137-47. PubMed ID: 8565113 [TBL] [Abstract][Full Text] [Related]
11. [Reasons causing a lag period in the oxidative phosphorylation process. Isn't ATP an internal uncoupler of ATP synthetase?]. Bronnikov GE; Vinogradova SO; Mezentseva VS; Samoĭlova EV Biofizika; 1999; 44(3):465-73. PubMed ID: 10439862 [TBL] [Abstract][Full Text] [Related]
12. A respiratory-driven and an artificially driven ATP synthesis in mutants of Vibrio parahaemolyticus lacking H+-translocating ATPase. Sakai Y; Moritani C; Tsuda M; Tsuchiya T Biochim Biophys Acta; 1989 Mar; 973(3):450-6. PubMed ID: 2522319 [TBL] [Abstract][Full Text] [Related]
13. 3' Esters of ADP as energy-transfer inhibitors and probes of the catalytic site of oxidative phosphorylation. Schäfer G; Onur G Eur J Biochem; 1979 Jul; 97(2):415-24. PubMed ID: 157276 [TBL] [Abstract][Full Text] [Related]
14. Catalytic hydrolysis and synthesis of adenosine 5'-triphosphate by stereoisomers of covalently labeled F1-adenosinetriphosphatase and reconstituted submitochondrial particles. Wang JH; Cesana J; Wu JC Biochemistry; 1987 Aug; 26(17):5527-33. PubMed ID: 2890376 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of energy-transducing reactions by 8-nitreno-ATP covalently bound to bovine heart submitochondrial particles: direct interaction between ATPase and redox enzymes. Herweijer MA; Berden JA; Kemp A; Slater EC Biochim Biophys Acta; 1985 Aug; 809(1):81-9. PubMed ID: 2862915 [TBL] [Abstract][Full Text] [Related]
16. ATP synthesis catalyzed by the mitochondrial F1-F0 ATP synthase is not a reversal of its ATPase activity. Syroeshkin AV; Vasilyeva EA; Vinogradov AD FEBS Lett; 1995 Jun; 366(1):29-32. PubMed ID: 7789510 [TBL] [Abstract][Full Text] [Related]
17. The binding and release of the inhibitor protein are governed independently by ATP and membrane potential in ox-heart submitochondrial vesicles. Lippe G; Sorgato MC; Harris DA Biochim Biophys Acta; 1988 Mar; 933(1):12-21. PubMed ID: 2894853 [TBL] [Abstract][Full Text] [Related]
18. The effects of partial uncoupling upon the kinetics of ATP synthesis by vesicles from Paracoccus denitrificans and by bovine heart submitochondrial particles. Implications for the mechanism of the proton-translocating ATP synthase. McCarthy JE; Ferguson SJ Eur J Biochem; 1983 May; 132(2):425-31. PubMed ID: 6301834 [TBL] [Abstract][Full Text] [Related]
19. Intragenic and intergenic suppression of the Escherichia coli ATP synthase subunit a mutation of Gly-213 to Asn: functional interactions between residues in the proton transport site. Kuo PH; Nakamoto RK Biochem J; 2000 May; 347 Pt 3(Pt 3):797-805. PubMed ID: 10769185 [TBL] [Abstract][Full Text] [Related]
20. Protons in the thylakoid membrane-sequestered domains can directly pass through the coupling factor during ATP synthesis in flashing light. Theg SM; Chiang G; Dilley RA J Biol Chem; 1988 Jan; 263(2):673-81. PubMed ID: 2891700 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]