BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 28730682)

  • 1. Structure and development of the subesophageal zone of the Drosophila brain. I. Segmental architecture, compartmentalization, and lineage anatomy.
    Hartenstein V; Omoto JJ; Ngo KT; Wong D; Kuert PA; Reichert H; Lovick JK; Younossi-Hartenstein A
    J Comp Neurol; 2018 Jan; 526(1):6-32. PubMed ID: 28730682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and development of the subesophageal zone of the Drosophila brain. II. Sensory compartments.
    Kendroud S; Bohra AA; Kuert PA; Nguyen B; Guillermin O; Sprecher SG; Reichert H; VijayRaghavan K; Hartenstein V
    J Comp Neurol; 2018 Jan; 526(1):33-58. PubMed ID: 28875566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of the anterior visual input pathway to the Drosophila central complex.
    Lovick JK; Omoto JJ; Ngo KT; Hartenstein V
    J Comp Neurol; 2017 Nov; 525(16):3458-3475. PubMed ID: 28675433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural lineages of the Drosophila brain: a three-dimensional digital atlas of the pattern of lineage location and projection at the late larval stage.
    Pereanu W; Hartenstein V
    J Neurosci; 2006 May; 26(20):5534-53. PubMed ID: 16707805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lineage-associated tracts defining the anatomy of the Drosophila first instar larval brain.
    Hartenstein V; Younossi-Hartenstein A; Lovick JK; Kong A; Omoto JJ; Ngo KT; Viktorin G
    Dev Biol; 2015 Oct; 406(1):14-39. PubMed ID: 26141956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arborization pattern of engrailed-positive neural lineages reveal neuromere boundaries in the Drosophila brain neuropil.
    Kumar A; Fung S; Lichtneckert R; Reichert H; Hartenstein V
    J Comp Neurol; 2009 Nov; 517(1):87-104. PubMed ID: 19711412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterns of growth and tract formation during the early development of secondary lineages in the Drosophila larval brain.
    Lovick JK; Kong A; Omoto JJ; Ngo KT; Younossi-Hartenstein A; Hartenstein V
    Dev Neurobiol; 2016 Apr; 76(4):434-51. PubMed ID: 26178322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mode of arthropod brain evolution suggested by Drosophila commissure development.
    Page DT
    Evol Dev; 2004; 6(1):25-31. PubMed ID: 15108815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuronal fiber tracts connecting the brain and ventral nerve cord of the early Drosophila larva.
    Cardona A; Larsen C; Hartenstein V
    J Comp Neurol; 2009 Aug; 515(4):427-40. PubMed ID: 19459219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postembryonic lineages of the Drosophila ventral nervous system: Neuroglian expression reveals the adult hemilineage associated fiber tracts in the adult thoracic neuromeres.
    Shepherd D; Harris R; Williams DW; Truman JW
    J Comp Neurol; 2016 Sep; 524(13):2677-95. PubMed ID: 26878258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying neuronal lineages of Drosophila by sequence analysis of axon tracts.
    Cardona A; Saalfeld S; Arganda I; Pereanu W; Schindelin J; Hartenstein V
    J Neurosci; 2010 Jun; 30(22):7538-53. PubMed ID: 20519528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postembryonic lineages of the Drosophila brain: I. Development of the lineage-associated fiber tracts.
    Lovick JK; Ngo KT; Omoto JJ; Wong DC; Nguyen JD; Hartenstein V
    Dev Biol; 2013 Dec; 384(2):228-57. PubMed ID: 23880429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A map of sensilla and neurons in the taste system of drosophila larvae.
    Rist A; Thum AS
    J Comp Neurol; 2017 Dec; 525(18):3865-3889. PubMed ID: 28842919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drosophila ammonium transporter Rh50 is required for integrity of larval muscles and neuromuscular system.
    Lecompte M; Cattaert D; Vincent A; Birman S; Chérif-Zahar B
    J Comp Neurol; 2020 Jan; 528(1):81-94. PubMed ID: 31273786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The astrocyte network in the ventral nerve cord neuropil of the Drosophila third-instar larva.
    Hernandez E; MacNamee SE; Kaplan LR; Lance K; Garcia-Verdugo HD; Farhadi DS; Deer C; Lee SW; Oland LA
    J Comp Neurol; 2020 Jul; 528(10):1683-1703. PubMed ID: 31909826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drosophila E-cadherin and its binding partner Armadillo/ beta-catenin are required for axonal pathway choices in the developing larval brain.
    Fung S; Wang F; Spindler SR; Hartenstein V
    Dev Biol; 2009 Aug; 332(2):371-82. PubMed ID: 19520071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anatomical characterization of PDF-tri neurons and peptidergic neurons associated with eclosion behavior in Drosophila.
    Selcho M; Mühlbauer B; Hensgen R; Shiga S; Wegener C; Yasuyama K
    J Comp Neurol; 2018 Jun; 526(8):1307-1328. PubMed ID: 29427506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental analysis of the dopamine-containing neurons of the Drosophila brain.
    Hartenstein V; Cruz L; Lovick JK; Guo M
    J Comp Neurol; 2017 Feb; 525(2):363-379. PubMed ID: 27350102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postembryonic lineages of the Drosophila brain: II. Identification of lineage projection patterns based on MARCM clones.
    Wong DC; Lovick JK; Ngo KT; Borisuthirattana W; Omoto JJ; Hartenstein V
    Dev Biol; 2013 Dec; 384(2):258-89. PubMed ID: 23872236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental organization of central neurons in the adult Drosophila ventral nervous system.
    Shepherd D; Sahota V; Court R; Williams DW; Truman JW
    J Comp Neurol; 2019 Oct; 527(15):2573-2598. PubMed ID: 30919956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.