These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 28730825)

  • 1. The implication of AMPA receptor in synaptic plasticity impairment and intellectual disability in fragile X syndrome.
    Cheng GR; Li XY; Xiang YD; Liu D; McClintock SM; Zeng Y
    Physiol Res; 2017 Nov; 66(5):715-727. PubMed ID: 28730825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The state of synapses in fragile X syndrome.
    Pfeiffer BE; Huber KM
    Neuroscientist; 2009 Oct; 15(5):549-67. PubMed ID: 19325170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fragile X mental retardation protein deficiency leads to excessive mGluR5-dependent internalization of AMPA receptors.
    Nakamoto M; Nalavadi V; Epstein MP; Narayanan U; Bassell GJ; Warren ST
    Proc Natl Acad Sci U S A; 2007 Sep; 104(39):15537-42. PubMed ID: 17881561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AMPAR trafficking in synapse maturation and plasticity.
    Bassani S; Folci A; Zapata J; Passafaro M
    Cell Mol Life Sci; 2013 Dec; 70(23):4411-30. PubMed ID: 23475111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GluA1-homomeric AMPA receptor in synaptic plasticity and neurological diseases.
    Ge Y; Wang YT
    Neuropharmacology; 2021 Oct; 197():108708. PubMed ID: 34274350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of GluN2A NMDA receptors ameliorates synaptic plasticity deficits in the Fmr1
    Lundbye CJ; Toft AKH; Banke TG
    J Physiol; 2018 Oct; 596(20):5017-5031. PubMed ID: 30132892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional changes of AMPA responses in human induced pluripotent stem cell-derived neural progenitors in fragile X syndrome.
    Achuta VS; Möykkynen T; Peteri UK; Turconi G; Rivera C; Keinänen K; Castrén ML
    Sci Signal; 2018 Jan; 11(513):. PubMed ID: 29339535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain plasticity in paediatric neurology.
    Johnston MV
    Eur J Paediatr Neurol; 2003; 7(3):105-13. PubMed ID: 12788036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of AMPA receptor trafficking and synaptic plasticity.
    Anggono V; Huganir RL
    Curr Opin Neurobiol; 2012 Jun; 22(3):461-9. PubMed ID: 22217700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulatory mechanisms of AMPA receptors in synaptic plasticity.
    Derkach VA; Oh MC; Guire ES; Soderling TR
    Nat Rev Neurosci; 2007 Feb; 8(2):101-13. PubMed ID: 17237803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Role of AMPARs Composition and Trafficking in Synaptic Plasticity and Diseases.
    Wu QL; Gao Y; Li JT; Ma WY; Chen NH
    Cell Mol Neurobiol; 2022 Nov; 42(8):2489-2504. PubMed ID: 34436728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The deubiquitinating enzyme USP46 regulates AMPA receptor ubiquitination and trafficking.
    Huo Y; Khatri N; Hou Q; Gilbert J; Wang G; Man HY
    J Neurochem; 2015 Sep; 134(6):1067-80. PubMed ID: 26077708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dysregulated Ca
    Danesi C; Keinänen K; Castrén ML
    Front Synaptic Neurosci; 2019; 11():2. PubMed ID: 30800064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Palmitoylation-mediated synaptic regulation of AMPA receptor trafficking and function.
    Sohn H; Park M
    Arch Pharm Res; 2019 May; 42(5):426-435. PubMed ID: 30838509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AMPA receptor trafficking and the mechanisms underlying synaptic plasticity and cognitive aging.
    Henley JM; Wilkinson KA
    Dialogues Clin Neurosci; 2013 Mar; 15(1):11-27. PubMed ID: 23576886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Posttranslational modifications and receptor-associated proteins in AMPA receptor trafficking and synaptic plasticity.
    Jiang J; Suppiramaniam V; Wooten MW
    Neurosignals; 2006-2007; 15(5):266-82. PubMed ID: 17622793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of AMPAR trafficking in synaptic plasticity by BDNF and the impact of neurodegenerative disease.
    Keifer J
    J Neurosci Res; 2022 Apr; 100(4):979-991. PubMed ID: 35128708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PDE-4 inhibition rescues aberrant synaptic plasticity in Drosophila and mouse models of fragile X syndrome.
    Choi CH; Schoenfeld BP; Weisz ED; Bell AJ; Chambers DB; Hinchey J; Choi RJ; Hinchey P; Kollaros M; Gertner MJ; Ferrick NJ; Terlizzi AM; Yohn N; Koenigsberg E; Liebelt DA; Zukin RS; Woo NH; Tranfaglia MR; Louneva N; Arnold SE; Siegel SJ; Bolduc FV; McDonald TV; Jongens TA; McBride SM
    J Neurosci; 2015 Jan; 35(1):396-408. PubMed ID: 25568131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BDNF in fragile X syndrome.
    Castrén ML; Castrén E
    Neuropharmacology; 2014 Jan; 76 Pt C():729-36. PubMed ID: 23727436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic AMPA receptor composition in development, plasticity and disease.
    Henley JM; Wilkinson KA
    Nat Rev Neurosci; 2016 Jun; 17(6):337-50. PubMed ID: 27080385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.