These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 28730879)

  • 41. Energy-based RNA consensus secondary structure prediction in multiple sequence alignments.
    Washietl S; Bernhart SH; Kellis M
    Methods Mol Biol; 2014; 1097():125-41. PubMed ID: 24639158
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Prediction of RNA secondary structure by free energy minimization.
    Mathews DH; Turner DH
    Curr Opin Struct Biol; 2006 Jun; 16(3):270-8. PubMed ID: 16713706
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dynalign: an algorithm for finding the secondary structure common to two RNA sequences.
    Mathews DH; Turner DH
    J Mol Biol; 2002 Mar; 317(2):191-203. PubMed ID: 11902836
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Prediction of RNA pseudoknots using heuristic modeling with mapping and sequential folding.
    Dawson WK; Fujiwara K; Kawai G
    PLoS One; 2007 Sep; 2(9):e905. PubMed ID: 17878940
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Thermodynamic characterization of the complete set of sequence symmetric tandem mismatches in RNA and an improved model for predicting the free energy contribution of sequence asymmetric tandem mismatches.
    Christiansen ME; Znosko BM
    Biochemistry; 2008 Apr; 47(14):4329-36. PubMed ID: 18330995
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Parsing nucleic acid pseudoknotted secondary structure: algorithm and applications.
    Rastegari B; Condon A
    J Comput Biol; 2007; 14(1):16-32. PubMed ID: 17381343
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Predicting a set of minimal free energy RNA secondary structures common to two sequences.
    Mathews DH
    Bioinformatics; 2005 May; 21(10):2246-53. PubMed ID: 15731207
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ant colony optimization for predicting RNA folding pathways.
    Takitou S; Taneda A
    Comput Biol Chem; 2019 Dec; 83():107118. PubMed ID: 31698162
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tertiary structure prediction of RNA-RNA complexes using a secondary structure and fragment-based method.
    Yamasaki S; Hirokawa T; Asai K; Fukui K
    J Chem Inf Model; 2014 Feb; 54(2):672-82. PubMed ID: 24479711
    [TBL] [Abstract][Full Text] [Related]  

  • 50. IncMD: incremental trie-based structural motif discovery algorithm.
    Badr G; Al-Turaiki I; Turcotte M; Mathkour H
    J Bioinform Comput Biol; 2014 Oct; 12(5):1450027. PubMed ID: 25362841
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Predicting common foldings of homologous RNAs.
    Le SY; Zuker M
    J Biomol Struct Dyn; 1991 Apr; 8(5):1027-44. PubMed ID: 1715169
    [TBL] [Abstract][Full Text] [Related]  

  • 52. SARNA-Predict: accuracy improvement of RNA secondary structure prediction using permutation-based simulated annealing.
    Tsang HH; Wiese KC
    IEEE/ACM Trans Comput Biol Bioinform; 2010; 7(4):727-40. PubMed ID: 21030739
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bridging the gap in RNA structure prediction.
    Shapiro BA; Yingling YG; Kasprzak W; Bindewald E
    Curr Opin Struct Biol; 2007 Apr; 17(2):157-65. PubMed ID: 17383172
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Toward a next-generation atlas of RNA secondary structure.
    Bai Y; Dai X; Harrison A; Johnston C; Chen M
    Brief Bioinform; 2016 Jan; 17(1):63-77. PubMed ID: 25922372
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rapid ab initio prediction of RNA pseudoknots via graph tree decomposition.
    Zhao J; Malmberg RL; Cai L
    J Math Biol; 2008 Jan; 56(1-2):145-59. PubMed ID: 17906862
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Study of the RNA secondary structure prediction].
    Sun Y; Lu H; Gui J; Song X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Oct; 31(5):1065-9. PubMed ID: 25764723
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Prediction of RNA secondary structure using generalized centroid estimators.
    Hamada M; Kiryu H; Sato K; Mituyama T; Asai K
    Bioinformatics; 2009 Feb; 25(4):465-73. PubMed ID: 19095700
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Thermodynamic matchers: strengthening the significance of RNA folding energies.
    Höchsmann T; Höchsmann M; Giegerich R
    Comput Syst Bioinformatics Conf; 2006; ():111-21. PubMed ID: 17369630
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Expected degree for RNA secondary structure networks.
    Clote P
    J Comput Chem; 2015 Jan; 36(2):103-17. PubMed ID: 25382310
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A dynamic programming algorithm for RNA structure prediction including pseudoknots.
    Rivas E; Eddy SR
    J Mol Biol; 1999 Feb; 285(5):2053-68. PubMed ID: 9925784
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.