These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 28730969)

  • 1. The Battle for Iron between Humans and Microbes.
    Carver PL
    Curr Med Chem; 2018; 25(1):85-96. PubMed ID: 28730969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Essential metals at the host-pathogen interface: nutritional immunity and micronutrient assimilation by human fungal pathogens.
    Crawford A; Wilson D
    FEMS Yeast Res; 2015 Nov; 15(7):. PubMed ID: 26242402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antimicrobial Peptides: A Promising Therapeutic Strategy in Tackling Antimicrobial Resistance.
    Nuti R; Goud NS; Saraswati AP; Alvala R; Alvala M
    Curr Med Chem; 2017; 24(38):4303-4314. PubMed ID: 28814242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of iron and chelators on infections in iron overload and non iron loaded conditions: prospects for the design of new antimicrobial therapies.
    Kontoghiorghes GJ; Kolnagou A; Skiada A; Petrikkos G
    Hemoglobin; 2010 Jun; 34(3):227-39. PubMed ID: 20524813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimicrobial action of chelating agents: repercussions on the microorganism development, virulence and pathogenesis.
    Santos AL; Sodre CL; Valle RS; Silva BA; Abi-Chacra EA; Silva LV; Souza-Goncalves AL; Sangenito LS; Goncalves DS; Souza LO; Palmeira VF; d'Avila-Levy CM; Kneipp LF; Kellett A; McCann M; Branquinha MH
    Curr Med Chem; 2012; 19(17):2715-37. PubMed ID: 22455582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The role of lactoferrin in the iron metabolism. Part II. Antimicrobial and antiinflammatory effect of lactoferrin by chelation of iron].
    Artym J
    Postepy Hig Med Dosw (Online); 2010 Nov; 64():604-16. PubMed ID: 21160095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Green synthesis and anti-infective activities of fluorinated pyrazoline derivatives.
    Shelke SN; Mhaske GR; Bonifácio VD; Gawande MB
    Bioorg Med Chem Lett; 2012 Sep; 22(17):5727-30. PubMed ID: 22832312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimicrobial activity of coffee melanoidins-a study of their metal-chelating properties.
    Rufián-Henares JA; de la Cueva SP
    J Agric Food Chem; 2009 Jan; 57(2):432-8. PubMed ID: 19123814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Siderophores in Iron Metabolism: From Mechanism to Therapy Potential.
    Wilson BR; Bogdan AR; Miyazawa M; Hashimoto K; Tsuji Y
    Trends Mol Med; 2016 Dec; 22(12):1077-1090. PubMed ID: 27825668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron overload and tuberculosis: a case for iron chelation therapy.
    Cronje L; Bornman L
    Int J Tuberc Lung Dis; 2005 Jan; 9(1):2-9. PubMed ID: 15675543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Siderophore uptake in bacteria and the battle for iron with the host; a bird's eye view.
    Chu BC; Garcia-Herrero A; Johanson TH; Krewulak KD; Lau CK; Peacock RS; Slavinskaya Z; Vogel HJ
    Biometals; 2010 Aug; 23(4):601-11. PubMed ID: 20596754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gallium-based anti-infectives: targeting microbial iron-uptake mechanisms.
    Kelson AB; Carnevali M; Truong-Le V
    Curr Opin Pharmacol; 2013 Oct; 13(5):707-16. PubMed ID: 23876838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein Kinase Inhibitors as Potential Antimicrobial Drugs Against Tuberculosis, Malaria and HIV.
    Cheng Y; Schorey JS; Zhang CC; Tan X
    Curr Pharm Des; 2017 Nov; 23(29):4369-4389. PubMed ID: 28606053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antagonistic control of microbial pathogens under iron limitations by siderophore producing bacteria in a chemostat setup.
    Fgaier H; Eberl HJ
    J Theor Biol; 2011 Mar; 273(1):103-14. PubMed ID: 21192949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Siderophore-based iron acquisition and pathogen control.
    Miethke M; Marahiel MA
    Microbiol Mol Biol Rev; 2007 Sep; 71(3):413-51. PubMed ID: 17804665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. War-Fe-re: iron at the core of fungal virulence and host immunity.
    Nevitt T
    Biometals; 2011 Jun; 24(3):547-58. PubMed ID: 21399939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transferrin-mediated iron sequestration as a novel therapy for bacterial and fungal infections.
    Bruhn KW; Spellberg B
    Curr Opin Microbiol; 2015 Oct; 27():57-61. PubMed ID: 26261881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal based pharmacologically active agents: synthesis, structural characterization, molecular modeling, CT-DNA binding studies and in vitro antimicrobial screening of iron(II) bromosalicylidene amino acid chelates.
    Abdel-Rahman LH; El-Khatib RM; Nassr LA; Abu-Dief AM; Ismael M; Seleem AA
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 117():366-78. PubMed ID: 24001978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How Zinc-Binding Systems, Expressed by Human Pathogens, Acquire Zinc from the Colonized Host Environment: A Critical Review on Zincophores.
    Bellotti D; Rowińska-Żyrek M; Remelli M
    Curr Med Chem; 2021; 28(35):7312-7338. PubMed ID: 33992060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, spectroscopic and thermal characterization of sulpiride complexes of iron, manganese, copper, cobalt, nickel, and zinc salts. Antibacterial and antifungal activity.
    Mohamed GG; Soliman MH
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Aug; 76(3-4):341-7. PubMed ID: 20418151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.