BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 28731222)

  • 1. Bio-nano interface and environment: A critical review.
    Pulido-Reyes G; Leganes F; Fernández-Piñas F; Rosal R
    Environ Toxicol Chem; 2017 Dec; 36(12):3181-3193. PubMed ID: 28731222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Crucial Role of Environmental Coronas in Determining the Biological Effects of Engineered Nanomaterials.
    Xu L; Xu M; Wang R; Yin Y; Lynch I; Liu S
    Small; 2020 Sep; 16(36):e2003691. PubMed ID: 32780948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Form-Specific and Probabilistic Environmental Risk Assessment of 3 Engineered Nanomaterials (Nano-Ag, Nano-TiO
    Hong H; Adam V; Nowack B
    Environ Toxicol Chem; 2021 Sep; 40(9):2629-2639. PubMed ID: 34171135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanomaterials in the Environment Acquire an "Eco-Corona" Impacting their Toxicity to Daphnia Magna-a Call for Updating Toxicity Testing Policies.
    Nasser F; Constantinou J; Lynch I
    Proteomics; 2020 May; 20(9):e1800412. PubMed ID: 31750982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using a holistic approach to assess the impact of engineered nanomaterials inducing toxicity in aquatic systems.
    He X; Aker WG; Leszczynski J; Hwang HM
    J Food Drug Anal; 2014 Mar; 22(1):128-146. PubMed ID: 24673910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental occurrences, behavior, fate, and ecological effects of nanomaterials: an introduction to the special series.
    Lowry GV; Hotze EM; Bernhardt ES; Dionysiou DD; Pedersen JA; Wiesner MR; Xing B
    J Environ Qual; 2010; 39(6):1867-74. PubMed ID: 21284284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physicochemical properties determine nanomaterial cellular uptake, transport, and fate.
    Zhu M; Nie G; Meng H; Xia T; Nel A; Zhao Y
    Acc Chem Res; 2013 Mar; 46(3):622-31. PubMed ID: 22891796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxicity of engineered nanomaterials mediated by nano-bio-eco interactions.
    He X; Fu P; Aker WG; Hwang HM
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2018 Jan; 36(1):21-42. PubMed ID: 29297743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bio- and eco-corona related to plants: Understanding the formation and biological effects of plant protein coatings on nanoparticles.
    Yu Y; Dai W; Luan Y
    Environ Pollut; 2023 Jan; 317():120784. PubMed ID: 36462678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Situ Characterization of Protein Adsorption onto Nanoparticles by Fluorescence Correlation Spectroscopy.
    Shang L; Nienhaus GU
    Acc Chem Res; 2017 Feb; 50(2):387-395. PubMed ID: 28145686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Integrated Testing Strategy for Ecotoxicity (ITS-ECO) Assessment in the Marine Environmental Compartment using Mytilus spp.: A Case Study using Pristine and Coated CuO and TiO
    Connolly M; Little S; Hartl MGJ; Fernandes TF
    Environ Toxicol Chem; 2022 Jun; 41(6):1390-1406. PubMed ID: 35226375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eco-Interactions of Engineered Nanomaterials in the Marine Environment: Towards an Eco-Design Framework.
    Corsi I; Bellingeri A; Eliso MC; Grassi G; Liberatori G; Murano C; Sturba L; Vannuccini ML; Bergami E
    Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-vitro in-vivo correlation (IVIVC) in nanomedicine: Is protein corona the missing link?
    Jain P; Pawar RS; Pandey RS; Madan J; Pawar S; Lakshmi PK; Sudheesh MS
    Biotechnol Adv; 2017 Nov; 35(7):889-904. PubMed ID: 28844973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmental dimensions of the protein corona.
    Wheeler KE; Chetwynd AJ; Fahy KM; Hong BS; Tochihuitl JA; Foster LA; Lynch I
    Nat Nanotechnol; 2021 Jun; 16(6):617-629. PubMed ID: 34117462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico analysis of nanomaterials hazard and risk.
    Cohen Y; Rallo R; Liu R; Liu HH
    Acc Chem Res; 2013 Mar; 46(3):802-12. PubMed ID: 23138971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How protein coronas determine the fate of engineered nanoparticles in biological environment.
    Capjak I; Goreta SŠ; Jurašin DD; Vrček IV
    Arh Hig Rada Toksikol; 2017 Dec; 68(4):245-253. PubMed ID: 29337683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental risk assessment of engineered nano-SiO
    Wang Y; Nowack B
    Environ Toxicol Chem; 2018 May; 37(5):1387-1395. PubMed ID: 29315795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein bio-corona: critical issue in immune nanotoxicology.
    Neagu M; Piperigkou Z; Karamanou K; Engin AB; Docea AO; Constantin C; Negrei C; Nikitovic D; Tsatsakis A
    Arch Toxicol; 2017 Mar; 91(3):1031-1048. PubMed ID: 27438349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capillary Electrophoresis Mass Spectrometry Approaches for Characterization of the Protein and Metabolite Corona Acquired by Nanomaterials.
    Chetwynd AJ; Zhang W; Faserl K; Thorn JA; Lynch I; Ramautar R; Lindner HH
    J Vis Exp; 2020 Oct; (164):. PubMed ID: 33191929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-dependent study of graphene oxide-trypsin adsorption interface and visualization of nano-protein corona.
    Kumari S; Sharma P; Ghosh D; Shandilya M; Rawat P; Hassan MI; Moulick RG; Bhattacharya J; Srivastava C; Majumder S
    Int J Biol Macromol; 2020 Nov; 163():2259-2269. PubMed ID: 32961193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.