These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 28731528)

  • 1. Improving Succinate Productivity by Engineering a Cyanobacterial CO
    Xiao M; Zhu X; Bi C; Ma Y; Zhang X
    Biotechnol J; 2017 Sep; 12(9):. PubMed ID: 28731528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased incorporation of gaseous CO
    Park S; Lee JU; Cho S; Kim H; Oh HB; Pack SP; Lee J
    J Biotechnol; 2017 Jan; 241():101-107. PubMed ID: 27908774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collaborative regulation of CO2 transport and fixation during succinate production in Escherichia coli.
    Zhu LW; Zhang L; Wei LN; Li HM; Yuan ZP; Chen T; Tang YL; Liang XH; Tang YJ
    Sci Rep; 2015 Dec; 5():17321. PubMed ID: 26626308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combinatorial optimization of CO2 transport and fixation to improve succinate production by promoter engineering.
    Yu JH; Zhu LW; Xia ST; Li HM; Tang YL; Liang XH; Chen T; Tang YJ
    Biotechnol Bioeng; 2016 Jul; 113(7):1531-41. PubMed ID: 26724788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activating phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase in combination for improvement of succinate production.
    Tan Z; Zhu X; Chen J; Li Q; Zhang X
    Appl Environ Microbiol; 2013 Aug; 79(16):4838-44. PubMed ID: 23747698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted optimization of central carbon metabolism for engineering succinate production in Escherichia coli.
    Zhao Y; Wang CS; Li FF; Liu ZN; Zhao GR
    BMC Biotechnol; 2016 Jun; 16(1):52. PubMed ID: 27342774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recombinant thermoactive phosphoenolpyruvate carboxylase (PEPC) from Thermosynechococcus elongatus and its coupling with mesophilic/thermophilic bacterial carbonic anhydrases (CAs) for the conversion of CO2 to oxaloacetate.
    Del Prete S; De Luca V; Capasso C; Supuran CT; Carginale V
    Bioorg Med Chem; 2016 Jan; 24(2):220-5. PubMed ID: 26712095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current advances of succinate biosynthesis in metabolically engineered Escherichia coli.
    Zhu LW; Tang YJ
    Biotechnol Adv; 2017 Dec; 35(8):1040-1048. PubMed ID: 28939498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering synergetic CO
    Hu G; Zhou J; Chen X; Qian Y; Gao C; Guo L; Xu P; Chen W; Chen J; Li Y; Liu L
    Metab Eng; 2018 May; 47():496-504. PubMed ID: 29753840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli.
    Zhang X; Jantama K; Moore JC; Jarboe LR; Shanmugam KT; Ingram LO
    Proc Natl Acad Sci U S A; 2009 Dec; 106(48):20180-5. PubMed ID: 19918073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Putative extracellular α-class carbonic anhydrase, EcaA, of Synechococcus elongatus PCC 7942 is an active enzyme: a sequel to an old story.
    Kupriyanova EV; Sinetova MA; Bedbenov VS; Pronina NA; Los DA
    Microbiology (Reading); 2018 Apr; 164(4):576-586. PubMed ID: 29485398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced succinate production from glycerol by engineered Escherichia coli strains.
    Li Q; Wu H; Li Z; Ye Q
    Bioresour Technol; 2016 Oct; 218():217-23. PubMed ID: 27371794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon dioxide capture using Escherichia coli expressing carbonic anhydrase in a foam bioreactor.
    Watson SK; Han Z; Su WW; Deshusses MA; Kan E
    Environ Technol; 2016 Dec; 37(24):3186-92. PubMed ID: 27109547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ancillary contributions of heterologous biotin protein ligase and carbonic anhydrase for CO
    Lian H; Zeldes BM; Lipscomb GL; Hawkins AB; Han Y; Loder AJ; Nishiyama D; Adams MW; Kelly RM
    Biotechnol Bioeng; 2016 Dec; 113(12):2652-2660. PubMed ID: 27315782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pH determines the energetic efficiency of the cyanobacterial CO2 concentrating mechanism.
    Mangan NM; Flamholz A; Hood RD; Milo R; Savage DF
    Proc Natl Acad Sci U S A; 2016 Sep; 113(36):E5354-62. PubMed ID: 27551079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of CO2 on succinate production in dual-phase Escherichia coli fermentations.
    Lu S; Eiteman MA; Altman E
    J Biotechnol; 2009 Sep; 143(3):213-23. PubMed ID: 19631242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Succinate production by metabolically engineered Escherichia coli using sugarcane bagasse hydrolysate as the carbon source.
    Liu R; Liang L; Cao W; Wu M; Chen K; Ma J; Jiang M; Wei P; Ouyang P
    Bioresour Technol; 2013 May; 135():574-7. PubMed ID: 23010211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic engineering of Escherichia coli and in silico comparing of carboxylation pathways for high succinate productivity under aerobic conditions.
    Yang J; Wang Z; Zhu N; Wang B; Chen T; Zhao X
    Microbiol Res; 2014; 169(5-6):432-40. PubMed ID: 24103861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward solar biodiesel production from CO2 using engineered cyanobacteria.
    Woo HM; Lee HJ
    FEMS Microbiol Lett; 2017 May; 364(9):. PubMed ID: 28407086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The MpsAB Bicarbonate Transporter Is Superior to Carbonic Anhydrase in Biofilm-Forming Bacteria with Limited CO
    Fan SH; Matsuo M; Huang L; Tribelli PM; Götz F
    Microbiol Spectr; 2021 Sep; 9(1):e0030521. PubMed ID: 34287032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.