These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 28731706)

  • 1. Automated Construction of Molecular Active Spaces from Atomic Valence Orbitals.
    Sayfutyarova ER; Sun Q; Chan GK; Knizia G
    J Chem Theory Comput; 2017 Sep; 13(9):4063-4078. PubMed ID: 28731706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiconfiguration Pair-Density Functional Theory: A New Way To Treat Strongly Correlated Systems.
    Gagliardi L; Truhlar DG; Li Manni G; Carlson RK; Hoyer CE; Bao JL
    Acc Chem Res; 2017 Jan; 50(1):66-73. PubMed ID: 28001359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SparseMaps--A systematic infrastructure for reduced-scaling electronic structure methods. III. Linear-scaling multireference domain-based pair natural orbital N-electron valence perturbation theory.
    Guo Y; Sivalingam K; Valeev EF; Neese F
    J Chem Phys; 2016 Mar; 144(9):094111. PubMed ID: 26957161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic Active Space Selection for Calculating Electronic Excitation Energies Based on High-Spin Unrestricted Hartree-Fock Orbitals.
    Bao JJ; Truhlar DG
    J Chem Theory Comput; 2019 Oct; 15(10):5308-5318. PubMed ID: 31411880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical Meaning of Virtual Kohn-Sham Orbitals and Orbital Energies: An Ideal Basis for the Description of Molecular Excitations.
    van Meer R; Gritsenko OV; Baerends EJ
    J Chem Theory Comput; 2014 Oct; 10(10):4432-41. PubMed ID: 26588140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic Selection of Active Orbitals from Generalized Valence Bond Orbitals.
    Zou J; Niu K; Ma H; Li S; Fang W
    J Phys Chem A; 2020 Oct; 124(40):8321-8329. PubMed ID: 32894939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting Bond Dissociation Energies of Transition-Metal Compounds by Multiconfiguration Pair-Density Functional Theory and Second-Order Perturbation Theory Based on Correlated Participating Orbitals and Separated Pairs.
    Bao JL; Odoh SO; Gagliardi L; Truhlar DG
    J Chem Theory Comput; 2017 Feb; 13(2):616-626. PubMed ID: 28001390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic Construction of the Initial Orbitals for Efficient Generalized Valence Bond Calculations of Large Systems.
    Wang Q; Zou J; Xu E; Pulay P; Li S
    J Chem Theory Comput; 2019 Jan; 15(1):141-153. PubMed ID: 30481019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extended separated-pair approximation for transition metal potential energy curves.
    Li SJ; Gagliardi L; Truhlar DG
    J Chem Phys; 2020 Mar; 152(12):124118. PubMed ID: 32241117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Valence Virtual Orbitals: An Unambiguous ab Initio Quantification of the LUMO Concept.
    Schmidt MW; Hull EA; Windus TL
    J Phys Chem A; 2015 Oct; 119(41):10408-27. PubMed ID: 26430954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linear-scaling implementation of molecular response theory in self-consistent field electronic-structure theory.
    Coriani S; Høst S; Jansík B; Thøgersen L; Olsen J; Jørgensen P; Reine S; Pawłowski F; Helgaker T; Sałek P
    J Chem Phys; 2007 Apr; 126(15):154108. PubMed ID: 17461615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constructing Molecular π-Orbital Active Spaces for Multireference Calculations of Conjugated Systems.
    Sayfutyarova ER; Hammes-Schiffer S
    J Chem Theory Comput; 2019 Mar; 15(3):1679-1689. PubMed ID: 30689378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Outstanding performance of configuration interaction singles and doubles using exact exchange Kohn-Sham orbitals in real-space numerical grid method.
    Lim J; Choi S; Kim J; Kim WY
    J Chem Phys; 2016 Dec; 145(22):224309. PubMed ID: 27984905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comprehensive analysis of molecule-intrinsic quasi-atomic, bonding, and correlating orbitals. I. Hartree-Fock wave functions.
    West AC; Schmidt MW; Gordon MS; Ruedenberg K
    J Chem Phys; 2013 Dec; 139(23):234107. PubMed ID: 24359352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multireference Model Chemistries for Thermochemical Kinetics.
    Tishchenko O; Zheng J; Truhlar DG
    J Chem Theory Comput; 2008 Aug; 4(8):1208-19. PubMed ID: 26631697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. iCAS: Imposed Automatic Selection and Localization of Complete Active Spaces.
    Lei Y; Suo B; Liu W
    J Chem Theory Comput; 2021 Aug; 17(8):4846-4859. PubMed ID: 34314180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A cautionary tale: Problems in the valence-CASSCF description of the ground state (X
    Xu LT; Dunning TH
    J Chem Phys; 2020 Sep; 153(11):114113. PubMed ID: 32962390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural excitation orbitals from linear response theories: Time-dependent density functional theory, time-dependent Hartree-Fock, and time-dependent natural orbital functional theory.
    van Meer R; Gritsenko OV; Baerends EJ
    J Chem Phys; 2017 Jan; 146(4):044119. PubMed ID: 28147540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Challenges in Multireference Perturbation Theory for the Calculations of the g-Tensor of First-Row Transition-Metal Complexes.
    Singh SK; Atanasov M; Neese F
    J Chem Theory Comput; 2018 Sep; 14(9):4662-4677. PubMed ID: 30067364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local Hartree-Fock orbitals using a three-level optimization strategy for the energy.
    Høyvik IM; Jansik B; Kristensen K; Jørgensen P
    J Comput Chem; 2013 Jun; 34(15):1311-20. PubMed ID: 23456899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.