These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 28731758)

  • 21. Secondary bacterial flagellar system improves bacterial spreading by increasing the directional persistence of swimming.
    Bubendorfer S; Koltai M; Rossmann F; Sourjik V; Thormann KM
    Proc Natl Acad Sci U S A; 2014 Aug; 111(31):11485-90. PubMed ID: 25049414
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Large deformations of the hook affect free-swimming singly flagellated bacteria during flick motility.
    Jabbarzadeh M; Fu HC
    Phys Rev E; 2020 Sep; 102(3-1):033115. PubMed ID: 33076012
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fast-moving bacteria self-organize into active two-dimensional crystals of rotating cells.
    Petroff AP; Wu XL; Libchaber A
    Phys Rev Lett; 2015 Apr; 114(15):158102. PubMed ID: 25933342
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Resistive force theory and wave dynamics in swimming flagellar apparatus isolated from
    Goli Pozveh S; Bae AJ; Gholami A
    Soft Matter; 2021 Feb; 17(6):1601-1613. PubMed ID: 33355581
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cinemicrographic analysis of the movement of flagellated bacteria. II. The ratio of the propulsive velocity to the frequency of the wave propagation along flagellar tail.
    Shimada K; Ikkai T; Yoshida T; Asakura S
    J Mechanochem Cell Motil; 1976 Mar; 3(3):185-93. PubMed ID: 932565
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel role for RecA under non-stress: promotion of swarming motility in Escherichia coli K-12.
    Gómez-Gómez JM; Manfredi C; Alonso JC; Blázquez J
    BMC Biol; 2007 Mar; 5():14. PubMed ID: 17391508
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unexpected bipolar flagellar arrangements and long-range flows driven by bacteria near solid boundaries.
    Cisneros LH; Kessler JO; Ortiz R; Cortez R; Bees MA
    Phys Rev Lett; 2008 Oct; 101(16):168102. PubMed ID: 18999716
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of tumbling in bacterial swarming.
    Sidortsov M; Morgenstern Y; Be'er A
    Phys Rev E; 2017 Aug; 96(2-1):022407. PubMed ID: 28950618
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cell-body rocking is a dominant mechanism for flagellar synchronization in a swimming alga.
    Geyer VF; Jülicher F; Howard J; Friedrich BM
    Proc Natl Acad Sci U S A; 2013 Nov; 110(45):18058-63. PubMed ID: 24145440
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluid flows created by swimming bacteria drive self-organization in confined suspensions.
    Lushi E; Wioland H; Goldstein RE
    Proc Natl Acad Sci U S A; 2014 Jul; 111(27):9733-8. PubMed ID: 24958878
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Shelter in a Swarm.
    Harshey RM; Partridge JD
    J Mol Biol; 2015 Nov; 427(23):3683-94. PubMed ID: 26277623
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Analysis of the swimming pattern and the velocity of bacteria using video tracking method].
    Shigematsu M
    Fukuoka Igaku Zasshi; 1997 Apr; 88(4):117-27. PubMed ID: 9154715
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fibrous Flagellar Hairs of Chlamydomonas reinhardtii Do Not Enhance Swimming.
    Amador GJ; Wei D; Tam D; Aubin-Tam ME
    Biophys J; 2020 Jun; 118(12):2914-2925. PubMed ID: 32502384
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transitioning to confined spaces impacts bacterial swimming and escape response.
    Lynch JB; James N; McFall-Ngai M; Ruby EG; Shin S; Takagi D
    Biophys J; 2022 Jul; 121(13):2653-2662. PubMed ID: 35398019
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of Novel Factors Involved in Swimming and Swarming Motility in Salmonella enterica Serovar Typhimurium.
    Deditius JA; Felgner S; Spöring I; Kühne C; Frahm M; Rohde M; Weiß S; Erhardt M
    PLoS One; 2015; 10(8):e0135351. PubMed ID: 26267246
    [TBL] [Abstract][Full Text] [Related]  

  • 36.
    Shave MK; Xu Z; Raman V; Kalasin S; Tuominen MT; Forbes NS; Santore MM
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):17196-17206. PubMed ID: 33821607
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrodynamic analysis of flagellated bacteria swimming near one and between two no-slip plane boundaries.
    Shum H; Gaffney EA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033012. PubMed ID: 25871207
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chlamydomonas swims with two "gears" in a eukaryotic version of run-and-tumble locomotion.
    Polin M; Tuval I; Drescher K; Gollub JP; Goldstein RE
    Science; 2009 Jul; 325(5939):487-90. PubMed ID: 19628868
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Swimming patterns of the quadriflagellate Tetraflagellochloris mauritanica (Chlamydomonadales, Chlorophyceae).
    Barsanti L; Coltelli P; Evangelista V; Frassanito AM; Gualtieri P
    J Phycol; 2016 Apr; 52(2):209-18. PubMed ID: 27037586
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transient locking of the hook procures enhanced motility to flagellated bacteria.
    Duchesne I; Galstian T; Rainville S
    Sci Rep; 2017 Nov; 7(1):16354. PubMed ID: 29180634
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.