These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 28731839)

  • 1. Cost-Benefit Arbitration Between Multiple Reinforcement-Learning Systems.
    Kool W; Gershman SJ; Cushman FA
    Psychol Sci; 2017 Sep; 28(9):1321-1333. PubMed ID: 28731839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Planning Complexity Registers as a Cost in Metacontrol.
    Kool W; Gershman SJ; Cushman FA
    J Cogn Neurosci; 2018 Oct; 30(10):1391-1404. PubMed ID: 29668390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. When Does Model-Based Control Pay Off?
    Kool W; Cushman FA; Gershman SJ
    PLoS Comput Biol; 2016 Aug; 12(8):e1005090. PubMed ID: 27564094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cognitive capacity limitations and Need for Cognition differentially predict reward-induced cognitive effort expenditure.
    Sandra DA; Otto AR
    Cognition; 2018 Mar; 172():101-106. PubMed ID: 29247878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conditioning task switching behavior.
    Braem S
    Cognition; 2017 Sep; 166():272-276. PubMed ID: 28595140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From Creatures of Habit to Goal-Directed Learners: Tracking the Developmental Emergence of Model-Based Reinforcement Learning.
    Decker JH; Otto AR; Daw ND; Hartley CA
    Psychol Sci; 2016 Jun; 27(6):848-58. PubMed ID: 27084852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new computational account of cognitive control over reinforcement-based decision-making: Modeling of a probabilistic learning task.
    Zendehrouh S
    Neural Netw; 2015 Nov; 71():112-23. PubMed ID: 26339919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning to allocate limited time to decisions with different expected outcomes.
    Khodadadi A; Fakhari P; Busemeyer JR
    Cogn Psychol; 2017 Jun; 95():17-49. PubMed ID: 28441518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The curse of planning: dissecting multiple reinforcement-learning systems by taxing the central executive.
    Otto AR; Gershman SJ; Markman AB; Daw ND
    Psychol Sci; 2013 May; 24(5):751-61. PubMed ID: 23558545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Habitual control of goal selection in humans.
    Cushman F; Morris A
    Proc Natl Acad Sci U S A; 2015 Nov; 112(45):13817-22. PubMed ID: 26460050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurostimulation Reveals Context-Dependent Arbitration Between Model-Based and Model-Free Reinforcement Learning.
    Weissengruber S; Lee SW; O'Doherty JP; Ruff CC
    Cereb Cortex; 2019 Dec; 29(11):4850-4862. PubMed ID: 30888032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Task complexity moderates the influence of descriptions in decisions from experience.
    Weiss-Cohen L; Konstantinidis E; Speekenbrink M; Harvey N
    Cognition; 2018 Jan; 170():209-227. PubMed ID: 29078094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model-based learning protects against forming habits.
    Gillan CM; Otto AR; Phelps EA; Daw ND
    Cogn Affect Behav Neurosci; 2015 Sep; 15(3):523-36. PubMed ID: 25801925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model-based reinforcement learning under concurrent schedules of reinforcement in rodents.
    Huh N; Jo S; Kim H; Sul JH; Jung MW
    Learn Mem; 2009 May; 16(5):315-23. PubMed ID: 19403794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurocognitive basis of model-based decision making and its metacontrol in childhood.
    Smid CR; Ganesan K; Thompson A; Cañigueral R; Veselic S; Royer J; Kool W; Hauser TU; Bernhardt B; Steinbeis N
    Dev Cogn Neurosci; 2023 Aug; 62():101269. PubMed ID: 37352654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Executive functions, information sampling, and decision making in narcolepsy with cataplexy.
    Delazer M; Högl B; Zamarian L; Wenter J; Gschliesser V; Ehrmann L; Brandauer E; Cevikkol Z; Frauscher B
    Neuropsychology; 2011 Jul; 25(4):477-87. PubMed ID: 21463040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reward-dependent learning in neuronal networks for planning and decision making.
    Dehaene S; Changeux JP
    Prog Brain Res; 2000; 126():217-29. PubMed ID: 11105649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of reinforcement learning and optimal decision-making theories of the basal ganglia.
    Bogacz R; Larsen T
    Neural Comput; 2011 Apr; 23(4):817-51. PubMed ID: 21222528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hunger improves reinforcement-driven but not planned action.
    van Swieten MMH; Bogacz R; Manohar SG
    Cogn Affect Behav Neurosci; 2021 Dec; 21(6):1196-1206. PubMed ID: 34652602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stress enhances model-free reinforcement learning only after negative outcome.
    Park H; Lee D; Chey J
    PLoS One; 2017; 12(7):e0180588. PubMed ID: 28723943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.