These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
414 related articles for article (PubMed ID: 28731988)
1. Roles of Mitogen-Activating Protein Kinase Kinase Kinase Kinase-3 (MAP4K3) in Preterm Skeletal Muscle Satellite Cell Myogenesis and Mammalian Target of Rapamycin Complex 1 (mTORC1) Activation Regulation. Guo CY; Yu MX; Dai JM; Pan SN; Lu ZT; Qiu XS; Zhuang SQ Med Sci Monit; 2017 Jul; 23():3562-3570. PubMed ID: 28731988 [TBL] [Abstract][Full Text] [Related]
2. Leucine Promotes Proliferation and Differentiation of Primary Preterm Rat Satellite Cells in Part through mTORC1 Signaling Pathway. Dai JM; Yu MX; Shen ZY; Guo CY; Zhuang SQ; Qiu XS Nutrients; 2015 May; 7(5):3387-400. PubMed ID: 26007333 [TBL] [Abstract][Full Text] [Related]
3. Activation of PASK by mTORC1 is required for the onset of the terminal differentiation program. Kikani CK; Wu X; Fogarty S; Kang SAW; Dephoure N; Gygi SP; Sabatini DM; Rutter J Proc Natl Acad Sci U S A; 2019 May; 116(21):10382-10391. PubMed ID: 31072927 [TBL] [Abstract][Full Text] [Related]
4. The mammalian target of rapamycin signaling pathway regulates myocyte enhancer factor-2C phosphorylation levels through integrin-linked kinase in goat skeletal muscle satellite cells. Wu H; Ren Y; Pan W; Dong Z; Cang M; Liu D Cell Biol Int; 2015 Nov; 39(11):1264-73. PubMed ID: 26041412 [TBL] [Abstract][Full Text] [Related]
5. Identification of the STAC3 gene as a skeletal muscle-specifically expressed gene and a novel regulator of satellite cell differentiation in cattle. Zhang Y; Cong X; Wang A; Jiang H J Anim Sci; 2014 Aug; 92(8):3284-90. PubMed ID: 24948655 [TBL] [Abstract][Full Text] [Related]
6. mTORC1-Mediated Satellite Cell Differentiation Is Required for Lysine-Induced Skeletal Muscle Growth. Jin CL; Zhang ZM; Song ZW; Gao CQ; Yan HC; Wang XQ J Agric Food Chem; 2020 Apr; 68(17):4884-4892. PubMed ID: 32275833 [TBL] [Abstract][Full Text] [Related]
7. Cultured equine satellite cells as a model system to assess leucine stimulated protein synthesis in horse muscle. DeBoer ML; Martinson KM; Pampusch MS; Hansen AM; Wells SM; Ward C; Hathaway M J Anim Sci; 2018 Feb; 96(1):143-153. PubMed ID: 29444251 [TBL] [Abstract][Full Text] [Related]
8. Myostatin negatively regulates satellite cell activation and self-renewal. McCroskery S; Thomas M; Maxwell L; Sharma M; Kambadur R J Cell Biol; 2003 Sep; 162(6):1135-47. PubMed ID: 12963705 [TBL] [Abstract][Full Text] [Related]
9. Lkb1 is indispensable for skeletal muscle development, regeneration, and satellite cell homeostasis. Shan T; Zhang P; Liang X; Bi P; Yue F; Kuang S Stem Cells; 2014 Nov; 32(11):2893-907. PubMed ID: 25069613 [TBL] [Abstract][Full Text] [Related]
10. Autophagy controls neonatal myogenesis by regulating the GH-IGF1 system through a NFE2L2- and DDIT3-mediated mechanism. Zecchini S; Giovarelli M; Perrotta C; Morisi F; Touvier T; Di Renzo I; Moscheni C; Bassi MT; Cervia D; Sandri M; Clementi E; De Palma C Autophagy; 2019 Jan; 15(1):58-77. PubMed ID: 30081710 [TBL] [Abstract][Full Text] [Related]
11. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Zammit PS Semin Cell Dev Biol; 2017 Dec; 72():19-32. PubMed ID: 29127046 [TBL] [Abstract][Full Text] [Related]
12. mTOR is necessary for proper satellite cell activity and skeletal muscle regeneration. Zhang P; Liang X; Shan T; Jiang Q; Deng C; Zheng R; Kuang S Biochem Biophys Res Commun; 2015 Jul 17-24; 463(1-2):102-8. PubMed ID: 25998386 [TBL] [Abstract][Full Text] [Related]
13. In vitro characterization of proliferation and differentiation of trout satellite cells. Gabillard JC; Sabin N; Paboeuf G Cell Tissue Res; 2010 Dec; 342(3):471-7. PubMed ID: 21086139 [TBL] [Abstract][Full Text] [Related]
14. Cellular signaling of amino acids towards mTORC1 activation in impaired human leucine catabolism. Schriever SC; Deutsch MJ; Adamski J; Roscher AA; Ensenauer R J Nutr Biochem; 2013 May; 24(5):824-31. PubMed ID: 22898570 [TBL] [Abstract][Full Text] [Related]
15. PKCε as a novel promoter of skeletal muscle differentiation and regeneration. Di Marcantonio D; Galli D; Carubbi C; Gobbi G; Queirolo V; Martini S; Merighi S; Vaccarezza M; Maffulli N; Sykes SM; Vitale M; Mirandola P Exp Cell Res; 2015 Nov; 339(1):10-9. PubMed ID: 26431586 [TBL] [Abstract][Full Text] [Related]
16. mTORC1 Mediates Lysine-Induced Satellite Cell Activation to Promote Skeletal Muscle Growth. Jin CL; Ye JL; Yang J; Gao CQ; Yan HC; Li HC; Wang XQ Cells; 2019 Nov; 8(12):. PubMed ID: 31801253 [TBL] [Abstract][Full Text] [Related]
17. USP7-dependent control of myogenin stability is required for terminal differentiation in skeletal muscle progenitors. de la Vega E; González N; Cabezas F; Montecino F; Blanco N; Olguín H FEBS J; 2020 Nov; 287(21):4659-4677. PubMed ID: 32115872 [TBL] [Abstract][Full Text] [Related]
18. Transient activation of mTORC1 signaling in skeletal muscle is independent of Akt1 regulation. Miyazaki M; Moriya N; Takemasa T Physiol Rep; 2020 Oct; 8(19):e14599. PubMed ID: 33038070 [TBL] [Abstract][Full Text] [Related]
19. Hypoxia affects positively the proliferation of bovine satellite cells and their myogenic differentiation through up-regulation of MyoD. Kook SH; Son YO; Lee KY; Lee HJ; Chung WT; Choi KC; Lee JC Cell Biol Int; 2008 Aug; 32(8):871-8. PubMed ID: 18468460 [TBL] [Abstract][Full Text] [Related]