These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 2873199)

  • 1. Mechanism of long-term potentiation of transmitter release induced by adrenaline in bullfrog sympathetic ganglia.
    Kumamoto E; Kuba K
    J Gen Physiol; 1986 May; 87(5):775-93. PubMed ID: 2873199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of K+-channel blockers on transmitter release in bullfrog sympathetic ganglia.
    Kumamoto E; Kuba K
    J Pharmacol Exp Ther; 1985 Oct; 235(1):241-7. PubMed ID: 2413197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanism of the inhibitory action of adrenaline on transmitter release in bullfrog sympathetic ganglia: independence of cyclic AMP and calcium ions.
    Kato E; Koketsu K; Kuba K; Kumamoto E
    Br J Pharmacol; 1985 Feb; 84(2):435-43. PubMed ID: 2858238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term potentiation induced by a sustained rise in the intraterminal Ca2+ in bull-frog sympathetic ganglia.
    Minota S; Kumamoto E; Kitakoga O; Kuba K
    J Physiol; 1991 Apr; 435():421-38. PubMed ID: 1685189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term potentiation of transmitter release induced by repetitive presynaptic activities in bull-frog sympathetic ganglia.
    Koyano K; Kuba K; Minota S
    J Physiol; 1985 Feb; 359():219-33. PubMed ID: 2860240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term potentiation of transmitter exocytosis expressed by Ca2+-induced Ca2+ release from thapsigargin-sensitive Ca2+ stores in preganglionic nerve terminals.
    Cong YL; Takeuchi S; Tokuno H; Kuba K
    Eur J Neurosci; 2004 Jul; 20(2):419-26. PubMed ID: 15233751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in presynaptic action of 4-aminopyridine and tetraethylammonium at frog neuromuscular junction.
    Glavinović MI
    Can J Physiol Pharmacol; 1987 May; 65(5):747-52. PubMed ID: 2887267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of calcium-activated potassium channels in transmitter release at the squid giant synapse.
    Augustine GJ; Charlton MP; Horn R
    J Physiol; 1988 Apr; 398():149-64. PubMed ID: 2455797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antidromic inhibition of acetylcholine release from presynaptic nerve terminals in bullfrog's sympathetic ganglia.
    Miyagawa M; Minota S; Koketsu K
    Brain Res; 1981 Nov; 224(2):305-13. PubMed ID: 6974584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Presynaptic facilitation at the crayfish neuromuscular junction. Role of calcium-activated potassium conductance.
    Sivaramakrishnan S; Brodwick MS; Bittner GD
    J Gen Physiol; 1991 Dec; 98(6):1181-96. PubMed ID: 1783897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term potentiation of transmitter release induced by adrenaline in bull-frog sympathetic ganglia.
    Kuba K; Kumamoto E
    J Physiol; 1986 May; 374():515-30. PubMed ID: 2427705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cardiac cells control transmitter release and calcium homeostasis in sympathetic neurons cultured from embryonic chick.
    Wakade AR; Przywara DA; Bhave SV; Mashalkar V; Wakade TD
    J Physiol; 1995 Nov; 488 ( Pt 3)(Pt 3):587-600. PubMed ID: 8576850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitory effects of arachidonic acid on nicotinic transmission in bullfrog sympathetic neurons.
    Minota S; Watanabe S
    J Neurophysiol; 1997 Nov; 78(5):2396-401. PubMed ID: 9356391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tetraethylammonium facilitation of single-pulse mediated action potential, [Ca2+]i and transmitter release in sympathetic neurons.
    Przywara DA; Mashalkar V; Bhave SV; Wakade TD; Wakade AR
    Eur J Pharmacol; 1993 Nov; 247(3):353-6. PubMed ID: 7905832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of transmitter release by action potential duration at the hippocampal CA3-CA1 synapse.
    Qian J; Saggau P
    J Neurophysiol; 1999 Jan; 81(1):288-98. PubMed ID: 9914289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural changes during transmitter release at synapses in the frog sympathetic ganglion.
    Dickinson-Nelson A; Reese TS
    J Neurosci; 1983 Jan; 3(1):42-52. PubMed ID: 6130132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the endogenous analgesic dipeptide, kyotorphin, on transmitter release in sympathetic ganglia.
    Hirai K; Katayama Y
    Br J Pharmacol; 1985 Jul; 85(3):629-34. PubMed ID: 2862945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of an indene-derivative, TN-871, on synaptic transmission in a sympathetic ganglion: presynaptic actions on neurotransmitter release.
    Shen YL; Hirai K; Katayama Y
    Bull Tokyo Med Dent Univ; 1995 Mar; 42(1):19-29. PubMed ID: 7895315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hippocampal long-term potentiation is not accompanied by presynaptic spike broadening, unlike synaptic potentiation by K+ channel blockers.
    Laerum H; Storm JF
    Brain Res; 1994 Feb; 637(1-2):349-55. PubMed ID: 8180818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Does gamma-aminobutyric acid in blood control transmitter release in bullfrog sympathetic ganglia?
    Kato E; Morita K; Kuba K; Yamada S; Kuhara T; Shinka T; Matsumoto I
    Brain Res; 1980 Aug; 195(1):208-14. PubMed ID: 6105005
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.