These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 28732157)
1. Large-Scale Statistics for Threshold Optimization of Optically Pumped Nanowire Lasers. Alanis JA; Saxena D; Mokkapati S; Jiang N; Peng K; Tang X; Fu L; Tan HH; Jagadish C; Parkinson P Nano Lett; 2017 Aug; 17(8):4860-4865. PubMed ID: 28732157 [TBL] [Abstract][Full Text] [Related]
2. Single-Mode Near-Infrared Lasing in a GaAsSb-Based Nanowire Superlattice at Room Temperature. Ren D; Ahtapodov L; Nilsen JS; Yang J; Gustafsson A; Huh J; Conibeer GJ; van Helvoort ATJ; Fimland BO; Weman H Nano Lett; 2018 Apr; 18(4):2304-2310. PubMed ID: 29502425 [TBL] [Abstract][Full Text] [Related]
3. Heterostructure and Skalsky S; Zhang Y; Alanis JA; Fonseka HA; Sanchez AM; Liu H; Parkinson P Light Sci Appl; 2020; 9():43. PubMed ID: 32194957 [TBL] [Abstract][Full Text] [Related]
4. Nonpolar InGaN/GaN Core-Shell Single Nanowire Lasers. Li C; Wright JB; Liu S; Lu P; Figiel JJ; Leung B; Chow WW; Brener I; Koleske DD; Luk TS; Feezell DF; Brueck SR; Wang GT Nano Lett; 2017 Feb; 17(2):1049-1055. PubMed ID: 28118019 [TBL] [Abstract][Full Text] [Related]
5. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Zhang Q; Ha ST; Liu X; Sum TC; Xiong Q Nano Lett; 2014 Oct; 14(10):5995-6001. PubMed ID: 25118830 [TBL] [Abstract][Full Text] [Related]
6. Optical Study of p-Doping in GaAs Nanowires for Low-Threshold and High-Yield Lasing. Alanis JA; Lysevych M; Burgess T; Saxena D; Mokkapati S; Skalsky S; Tang X; Mitchell P; Walton AS; Tan HH; Jagadish C; Parkinson P Nano Lett; 2019 Jan; 19(1):362-368. PubMed ID: 30525674 [TBL] [Abstract][Full Text] [Related]
7. Dilute Nitride Nanowire Lasers Based on a GaAs/GaNAs Core/Shell Structure. Chen S; Jansson M; Stehr JE; Huang Y; Ishikawa F; Chen WM; Buyanova IA Nano Lett; 2017 Mar; 17(3):1775-1781. PubMed ID: 28170267 [TBL] [Abstract][Full Text] [Related]
8. Ultralow Threshold, Single-Mode InGaAs/GaAs Multiquantum Disk Nanowire Lasers. Zhang X; Yi R; Gagrani N; Li Z; Zhang F; Gan X; Yao X; Yuan X; Wang N; Zhao J; Chen P; Lu W; Fu L; Tan HH; Jagadish C ACS Nano; 2021 May; 15(5):9126-9133. PubMed ID: 33970600 [TBL] [Abstract][Full Text] [Related]
9. Tuning Lasing Emission toward Long Wavelengths in GaAs-(In,Al)GaAs Core-Multishell Nanowires. Stettner T; Thurn A; Döblinger M; Hill MO; Bissinger J; Schmiedeke P; Matich S; Kostenbader T; Ruhstorfer D; Riedl H; Kaniber M; Lauhon LJ; Finley JJ; Koblmüller G Nano Lett; 2018 Oct; 18(10):6292-6300. PubMed ID: 30185051 [TBL] [Abstract][Full Text] [Related]
10. Nanowire Lasers of Formamidinium Lead Halide Perovskites and Their Stabilized Alloys with Improved Stability. Fu Y; Zhu H; Schrader AW; Liang D; Ding Q; Joshi P; Hwang L; Zhu XY; Jin S Nano Lett; 2016 Feb; 16(2):1000-8. PubMed ID: 26727024 [TBL] [Abstract][Full Text] [Related]
11. Continuous wave pumped single-mode nanolasers in inorganic perovskites with robust stability and high quantum yield. Jiang L; Liu R; Su R; Yu Y; Xu H; Wei Y; Zhou ZK; Wang X Nanoscale; 2018 Jul; 10(28):13565-13571. PubMed ID: 29974911 [TBL] [Abstract][Full Text] [Related]
12. Lasing in robust cesium lead halide perovskite nanowires. Eaton SW; Lai M; Gibson NA; Wong AB; Dou L; Ma J; Wang LW; Leone SR; Yang P Proc Natl Acad Sci U S A; 2016 Feb; 113(8):1993-8. PubMed ID: 26862172 [TBL] [Abstract][Full Text] [Related]
13. Toward electrically driven semiconductor nanowire lasers. Zhang Y; Saxena D; Aagesen M; Liu H Nanotechnology; 2019 May; 30(19):192002. PubMed ID: 30658345 [TBL] [Abstract][Full Text] [Related]
14. High-Quality Hexagonal Nonlayered CdS Nanoplatelets for Low-Threshold Whispering-Gallery-Mode Lasing. Mi Y; Jin B; Zhao L; Chen J; Zhang S; Shi J; Zhong Y; Du W; Zhang J; Zhang Q; Zhai T; Liu X Small; 2019 Aug; 15(35):e1901364. PubMed ID: 31282127 [TBL] [Abstract][Full Text] [Related]
15. Room Temperature Lasing from Semiconducting Single-Walled Carbon Nanotubes. Chen JS; Dasgupta A; Morrow DJ; Emmanuele R; Marks TJ; Hersam MC; Ma X ACS Nano; 2022 Oct; 16(10):16776-16783. PubMed ID: 36121213 [TBL] [Abstract][Full Text] [Related]
16. Epitaxially Grown InP Micro-Ring Lasers. Wong WW; Su Z; Wang N; Jagadish C; Tan HH Nano Lett; 2021 Jul; 21(13):5681-5688. PubMed ID: 34143635 [TBL] [Abstract][Full Text] [Related]
17. Telecom-band multiwavelength vertical emitting quantum well nanowire laser arrays. Zhang X; Zhang F; Yi R; Wang N; Su Z; Zhang M; Zhao B; Li Z; Qu J; M Cairney J; Lu Y; Zhao J; Gan X; Tan HH; Jagadish C; Fu L Light Sci Appl; 2024 Sep; 13(1):230. PubMed ID: 39227364 [TBL] [Abstract][Full Text] [Related]
18. Architecture for Surface-Emitting Lasers with On-Demand Lasing Wavelength by Nanowire Optical Cavities. Vafadar MF; Zhao S ACS Nano; 2024 Jun; 18(22):14290-14297. PubMed ID: 38767588 [TBL] [Abstract][Full Text] [Related]
19. Plasmonic lasing of nanocavity embedding in metallic nanoantenna array. Zhang C; Lu Y; Ni Y; Li M; Mao L; Liu C; Zhang D; Ming H; Wang P Nano Lett; 2015 Feb; 15(2):1382-7. PubMed ID: 25622291 [TBL] [Abstract][Full Text] [Related]
20. Design and Room-Temperature Operation of GaAs/AlGaAs Multiple Quantum Well Nanowire Lasers. Saxena D; Jiang N; Yuan X; Mokkapati S; Guo Y; Tan HH; Jagadish C Nano Lett; 2016 Aug; 16(8):5080-6. PubMed ID: 27459233 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]