These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 28732231)

  • 1. Kernel dynamic policy programming: Applicable reinforcement learning to robot systems with high dimensional states.
    Cui Y; Matsubara T; Sugimoto K
    Neural Netw; 2017 Oct; 94():13-23. PubMed ID: 28732231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Reinforcement Learning Neural Network for Robotic Manipulator Control.
    Hu Y; Si B
    Neural Comput; 2018 Jul; 30(7):1983-2004. PubMed ID: 29652591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kernel temporal differences for neural decoding.
    Bae J; Sanchez Giraldo LG; Pohlmeyer EA; Francis JT; Sanchez JC; Príncipe JC
    Comput Intell Neurosci; 2015; 2015():481375. PubMed ID: 25866504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kernel-based least squares policy iteration for reinforcement learning.
    Xu X; Hu D; Lu X
    IEEE Trans Neural Netw; 2007 Jul; 18(4):973-92. PubMed ID: 17668655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From free energy to expected energy: Improving energy-based value function approximation in reinforcement learning.
    Elfwing S; Uchibe E; Doya K
    Neural Netw; 2016 Dec; 84():17-27. PubMed ID: 27639720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsically motivated reinforcement learning for human-robot interaction in the real-world.
    Qureshi AH; Nakamura Y; Yoshikawa Y; Ishiguro H
    Neural Netw; 2018 Nov; 107():23-33. PubMed ID: 29631753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional Contour-following via Haptic Perception and Reinforcement Learning.
    Hellman RB; Tekin C; van der Schaar M; Santos VJ
    IEEE Trans Haptics; 2018; 11(1):61-72. PubMed ID: 28922126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reinforcement learning of motor skills with policy gradients.
    Peters J; Schaal S
    Neural Netw; 2008 May; 21(4):682-97. PubMed ID: 18482830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatio-temporal learning with the online finite and infinite echo-state Gaussian processes.
    Soh H; Demiris Y
    IEEE Trans Neural Netw Learn Syst; 2015 Mar; 26(3):522-36. PubMed ID: 25720008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parameter-exploring policy gradients.
    Sehnke F; Osendorfer C; Rückstiess T; Graves A; Peters J; Schmidhuber J
    Neural Netw; 2010 May; 23(4):551-9. PubMed ID: 20061118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reinforcement Learning Tracking Control for Robotic Manipulator With Kernel-Based Dynamic Model.
    Hu Y; Wang W; Liu H; Liu L
    IEEE Trans Neural Netw Learn Syst; 2020 Sep; 31(9):3570-3578. PubMed ID: 31689218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive importance sampling for value function approximation in off-policy reinforcement learning.
    Hachiya H; Akiyama T; Sugiayma M; Peters J
    Neural Netw; 2009 Dec; 22(10):1399-410. PubMed ID: 19216050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human-robot skills transfer interfaces for a flexible surgical robot.
    Calinon S; Bruno D; Malekzadeh MS; Nanayakkara T; Caldwell DG
    Comput Methods Programs Biomed; 2014 Sep; 116(2):81-96. PubMed ID: 24491285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A neural network model for the orbitofrontal cortex and task space acquisition during reinforcement learning.
    Zhang Z; Cheng Z; Lin Z; Nie C; Yang T
    PLoS Comput Biol; 2018 Jan; 14(1):e1005925. PubMed ID: 29300746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. State representation learning for control: An overview.
    Lesort T; Díaz-Rodríguez N; Goudou JI; Filliat D
    Neural Netw; 2018 Dec; 108():379-392. PubMed ID: 30268059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interacting with an artificial partner: modeling the role of emotional aspects.
    Cattinelli I; Goldwurm M; Borghese NA
    Biol Cybern; 2008 Dec; 99(6):473-89. PubMed ID: 18813942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining expert neural networks using reinforcement feedback for learning primitive grasping behavior.
    Moussa MA
    IEEE Trans Neural Netw; 2004 May; 15(3):629-38. PubMed ID: 15384551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clustering Neural Patterns in Kernel Reinforcement Learning Assists Fast Brain Control in Brain-Machine Interfaces.
    Zhang X; Libedinsky C; So R; Principe JC; Wang Y
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1684-1694. PubMed ID: 31403433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modular deep reinforcement learning from reward and punishment for robot navigation.
    Wang J; Elfwing S; Uchibe E
    Neural Netw; 2021 Mar; 135():115-126. PubMed ID: 33383526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning dynamic models for open loop predictive control of soft robotic manipulators.
    Thuruthel TG; Falotico E; Renda F; Laschi C
    Bioinspir Biomim; 2017 Oct; 12(6):066003. PubMed ID: 28767049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.