These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
348 related articles for article (PubMed ID: 28732343)
1. An ultrasensitive electrochemical biosensor for polynucleotide kinase assay based on gold nanoparticle-mediated lambda exonuclease cleavage-induced signal amplification. Cui L; Li Y; Lu M; Tang B; Zhang CY Biosens Bioelectron; 2018 Jan; 99():1-7. PubMed ID: 28732343 [TBL] [Abstract][Full Text] [Related]
2. Single-Molecule Detection of Polynucleotide Kinase Based on Phosphorylation-Directed Recovery of Fluorescence Quenched by Au Nanoparticles. Wang LJ; Zhang Q; Tang B; Zhang CY Anal Chem; 2017 Jul; 89(13):7255-7261. PubMed ID: 28585816 [TBL] [Abstract][Full Text] [Related]
3. Plasmonic AuNP/g-C3N4 Nanohybrid-based Photoelectrochemical Sensing Platform for Ultrasensitive Monitoring of Polynucleotide Kinase Activity Accompanying DNAzyme-Catalyzed Precipitation Amplification. Zhuang J; Lai W; Xu M; Zhou Q; Tang D ACS Appl Mater Interfaces; 2015 Apr; 7(15):8330-8. PubMed ID: 25837792 [TBL] [Abstract][Full Text] [Related]
4. Mimic Peroxidase- and Bi Cui L; Hu J; Wang M; Diao XK; Li CC; Zhang CY Anal Chem; 2018 Oct; 90(19):11478-11485. PubMed ID: 30156106 [TBL] [Abstract][Full Text] [Related]
5. Magnetic bead-gold nanoparticle hybrids probe based on optically countable gold nanoparticles with dark-field microscope for T4 polynucleotide kinase activity assay. Jin T; Zhang J; Zhao Y; Huang X; Tan C; Sun S; Tan Y Biosens Bioelectron; 2020 Feb; 150():111936. PubMed ID: 31818761 [TBL] [Abstract][Full Text] [Related]
6. Electrochemical DNA Sensors Based on MoS Lin M; Wan H; Zhang J; Wang Q; Hu X; Xia F ACS Appl Mater Interfaces; 2020 Oct; 12(41):45814-45821. PubMed ID: 32877162 [TBL] [Abstract][Full Text] [Related]
7. Cyclic up-regulation fluorescence of pyrene excimer for studying polynucleotide kinase activity based on dual amplification. Xu J; Gao Y; Li B; Jin Y Biosens Bioelectron; 2016 Jun; 80():91-97. PubMed ID: 26807522 [TBL] [Abstract][Full Text] [Related]
8. An electrochemical biosensor based on the enhanced quasi-reversible redox signal of prussian blue generated by self-sacrificial label of iron metal-organic framework. Cui L; Hu J; Li CC; Wang CM; Zhang CY Biosens Bioelectron; 2018 Dec; 122():168-174. PubMed ID: 30265966 [TBL] [Abstract][Full Text] [Related]
9. Label-free and sensitive detection of T4 polynucleotide kinase activity via coupling DNA strand displacement reaction with enzymatic-aided amplification. Cheng R; Tao M; Shi Z; Zhang X; Jin Y; Li B Biosens Bioelectron; 2015 Nov; 73():138-145. PubMed ID: 26057733 [TBL] [Abstract][Full Text] [Related]
10. Sensitive detection of T4 polynucleotide kinase activity based on coupled exonuclease reaction and nicking enzyme-assisted fluorescence signal amplification. Hou T; Wang X; Lu T; Liu X; Li F Anal Bioanal Chem; 2014 May; 406(12):2943-8. PubMed ID: 24728049 [TBL] [Abstract][Full Text] [Related]
11. A nanoplatform based on metal-organic frameworks and coupled exonuclease reaction for the fluorimetric determination of T4 polynucleotide kinase activity and inhibition. Chai Y; Cheng X; Xu G; Wei F; Bao J; Mei J; Ren D; Hu Q; Cen Y Mikrochim Acta; 2020 Mar; 187(4):243. PubMed ID: 32206934 [TBL] [Abstract][Full Text] [Related]
12. A DNA functionalized porphyrinic metal-organic framework as a peroxidase mimicking catalyst for amperometric determination of the activity of T4 polynucleotide kinase. Song W; Yin W; Zhang Z; He P; Yang X; Zhang X Mikrochim Acta; 2019 Feb; 186(3):149. PubMed ID: 30712077 [TBL] [Abstract][Full Text] [Related]
13. A WS2 nanosheet based sensing platform for highly sensitive detection of T4 polynucleotide kinase and its inhibitors. Ge J; Tang LJ; Xi Q; Li XP; Yu RQ; Jiang JH; Chu X Nanoscale; 2014 Jun; 6(12):6866-72. PubMed ID: 24830570 [TBL] [Abstract][Full Text] [Related]
14. Exonuclease III-assisted signal amplification strategy for sensitive fluorescence detection of polynucleotide kinase based on poly(thymine)-templated copper nanoparticles. Zhao H; Yan Y; Chen M; Hu T; Wu K; Liu H; Ma C Analyst; 2019 Nov; 144(22):6689-6697. PubMed ID: 31598619 [TBL] [Abstract][Full Text] [Related]
15. Adaption of an autonomously cascade DNA circuit for amplified detection and intracellular imaging of polynucleotide kinase with ultralow background. Shang J; Wei J; Wang Q; Wang J; Zhou Y; Yu S; Liu X; Wang F Biosens Bioelectron; 2020 Mar; 152():111994. PubMed ID: 31941614 [TBL] [Abstract][Full Text] [Related]
16. Detection of T4 polynucleotide kinase activity with immobilization of TiO2 nanotubes and amplification of Au nanoparticles. Wang G; He X; Xu G; Chen L; Zhu Y; Zhang X; Wang L Biosens Bioelectron; 2013 May; 43():125-30. PubMed ID: 23291616 [TBL] [Abstract][Full Text] [Related]
17. Amplified detection of T4 polynucleotide kinase activity by the coupled λ exonuclease cleavage reaction and catalytic assembly of bimolecular beacons. Hou T; Wang X; Liu X; Lu T; Liu S; Li F Anal Chem; 2014 Jan; 86(1):884-90. PubMed ID: 24328238 [TBL] [Abstract][Full Text] [Related]
18. Sensitive Detection of Polynucleotide Kinase Activity by Paper-Based Fluorescence Assay with λ Exonuclease Assistance. Zhang H; Zhao Z; Lei Z; Wang Z Anal Chem; 2016 Dec; 88(23):11358-11363. PubMed ID: 27797180 [TBL] [Abstract][Full Text] [Related]
19. Dumbbell DNA-templated CuNPs as a nano-fluorescent probe for detection of enzymes involved in ligase-mediated DNA repair. Qing T; He X; He D; Ye X; Shangguan J; Liu J; Yuan B; Wang K Biosens Bioelectron; 2017 Aug; 94():456-463. PubMed ID: 28340465 [TBL] [Abstract][Full Text] [Related]
20. An ultrasensitive signal-on electrochemical aptasensor for ochratoxin A determination based on DNA controlled layer-by-layer assembly of dual gold nanoparticle conjugates. Chen W; Yan C; Cheng L; Yao L; Xue F; Xu J Biosens Bioelectron; 2018 Oct; 117():845-851. PubMed ID: 30096739 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]