These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 28732462)

  • 1. Exploring general-purpose protein features for distinguishing enzymes and non-enzymes within the twilight zone.
    Ruiz-Blanco YB; Agüero-Chapin G; García-Hernández E; Álvarez O; Antunes A; Green J
    BMC Bioinformatics; 2017 Jul; 18(1):349. PubMed ID: 28732462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graph Theory-Based Sequence Descriptors as Remote Homology Predictors.
    Agüero-Chapin G; Galpert D; Molina-Ruiz R; Ancede-Gallardo E; Pérez-Machado G; de la Riva GA; Antunes A
    Biomolecules; 2019 Dec; 10(1):. PubMed ID: 31878100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of protein structural class for the twilight zone sequences.
    Kurgan L; Chen K
    Biochem Biophys Res Commun; 2007 Jun; 357(2):453-60. PubMed ID: 17433260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ProtDCal: A program to compute general-purpose-numerical descriptors for sequences and 3D-structures of proteins.
    Ruiz-Blanco YB; Paz W; Green J; Marrero-Ponce Y
    BMC Bioinformatics; 2015 May; 16():162. PubMed ID: 25982853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surveying alignment-free features for Ortholog detection in related yeast proteomes by using supervised big data classifiers.
    Galpert D; Fernández A; Herrera F; Antunes A; Molina-Ruiz R; Agüero-Chapin G
    BMC Bioinformatics; 2018 May; 19(1):166. PubMed ID: 29724166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alignment-Free Methods for the Detection and Specificity Prediction of Adenylation Domains.
    Agüero-Chapin G; Pérez-Machado G; Sánchez-Rodríguez A; Santos MM; Antunes A
    Methods Mol Biol; 2016; 1401():253-72. PubMed ID: 26831713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using support vector machines to distinguish enzymes: approached by incorporating wavelet transform.
    Qiu JD; Luo SH; Huang JH; Liang RP
    J Theor Biol; 2009 Feb; 256(4):625-31. PubMed ID: 19049810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of enzyme classification from protein sequence without the use of sequence similarity.
    des Jardins M; Karp PD; Krummenacker M; Lee TJ; Ouzounis CA
    Proc Int Conf Intell Syst Mol Biol; 1997; 5():92-9. PubMed ID: 9322021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel fractal approach for predicting G-protein-coupled receptors and their subfamilies with support vector machines.
    Nie G; Li Y; Wang F; Wang S; Hu X
    Biomed Mater Eng; 2015; 26 Suppl 1():S1829-36. PubMed ID: 26405954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A path from primary protein sequence to ligand recognition.
    Kho R; Baker BL; Newman JV; Jack RM; Sem DS; Villar HO; Hansen MR
    Proteins; 2003 Mar; 50(4):589-99. PubMed ID: 12577265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence representation and prediction of protein secondary structure for structural motifs in twilight zone proteins.
    Kurgan L; Kedarisetti KD
    Protein J; 2006 Dec; 25(7-8):463-74. PubMed ID: 17115254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Consensus-based engineering of protein stability: from intrabodies to thermostable enzymes.
    Steipe B
    Methods Enzymol; 2004; 388():176-86. PubMed ID: 15289071
    [No Abstract]   [Full Text] [Related]  

  • 13. Support vector machines with profile-based kernels for remote protein homology detection.
    Busuttil S; Abela J; Pace GJ
    Genome Inform; 2004; 15(2):191-200. PubMed ID: 15706505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved pairwise alignments of proteins in the Twilight Zone using local structure predictions.
    Huang YM; Bystroff C
    Bioinformatics; 2006 Feb; 22(4):413-22. PubMed ID: 16352653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using recurrence quantification analysis descriptors for protein sequence classification with support vector machines.
    Mitra J; Mundra P; Kulkarni BD; Jayaraman VK
    J Biomol Struct Dyn; 2007 Dec; 25(3):289-98. PubMed ID: 17937490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A coverage criterion for spaced seeds and its applications to support vector machine string kernels and k-mer distances.
    Noé L; Martin DE
    J Comput Biol; 2014 Dec; 21(12):947-63. PubMed ID: 25393923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes.
    Chou KC
    Bioinformatics; 2005 Jan; 21(1):10-9. PubMed ID: 15308540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AMT tag approach to proteomic characterization of Deinococcus radiodurans and Shewanella oneidensis.
    Lipton MS; Romine MF; Monroe ME; Elias DA; Pasa-Tolic L; Anderson GA; Anderson DJ; Fredrickson J; Hixson KK; Masselon C; Mottaz H; Tolic N; Smith RD
    Methods Biochem Anal; 2006; 49():113-34. PubMed ID: 16929677
    [No Abstract]   [Full Text] [Related]  

  • 19. Using Chou's amphiphilic pseudo-amino acid composition and support vector machine for prediction of enzyme subfamily classes.
    Zhou XB; Chen C; Li ZC; Zou XY
    J Theor Biol; 2007 Oct; 248(3):546-51. PubMed ID: 17628605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. INTERALIGN: interactive alignment editor for distantly related protein sequences.
    Pible O; Imbert G; Pellequer JL
    Bioinformatics; 2005 Jul; 21(14):3166-7. PubMed ID: 15870166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.