BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 2873254)

  • 1. High molecular weight microtubule-associated proteins: purification by electro-elution and amino acid compositions.
    Kosik KS; Bakalis SF; Selkoe DJ; Pierce MW; Duffy LK
    J Neurosci Res; 1986; 15(4):543-51. PubMed ID: 2873254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of high molecular weight microtubule-associated proteins in anterior pituitary tissue and cells using taxol-dependent purification combined with microtubule-associated protein specific antibodies.
    Bloom GS; Luca FC; Vallee RB
    Biochemistry; 1985 Jul; 24(15):4185-91. PubMed ID: 2864954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective purification of microtubule-associated proteins 1 and 2 from rat brain using poly(L-aspartic acid).
    Fujii T; Nakamura A; Ogoma Y; Kondo Y; Arai T
    Anal Biochem; 1990 Feb; 184(2):268-73. PubMed ID: 1970227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo and in vitro studies on the role of HMW-MAPs in taxol-induced microtubule bundling.
    Albertini DF; Herman B; Sherline P
    Eur J Cell Biol; 1984 Jan; 33(1):134-43. PubMed ID: 6141942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical and immunochemical identification of a microtubule-binding protein from bovine pancreas.
    Michalik L; Neuville P; Vanier MT; Launay JF
    Cell Motil Cytoskeleton; 1993; 25(4):381-90. PubMed ID: 8104715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A substrate of ecto-protein kinase is microtubule-associated protein 1B in cortical cell cultures undergoing synaptogenesis.
    Muramoto K; Taniguchi H; Kawahara M; Kobayashi K; Nonomura Y; Kuroda Y
    Biochem Biophys Res Commun; 1994 Dec; 205(2):1467-73. PubMed ID: 7802683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification and characterization of the high molecule weight microtubule associated proteins from neonatal rat brain.
    Guzman L; Bustos R; Maccioni RB
    Mol Cell Biochem; 1994 Feb; 131(2):105-13. PubMed ID: 8035775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a new microtubule-interacting protein Mip-90.
    González M; Cambiazo V; Maccioni RB
    Eur J Cell Biol; 1995 Jun; 67(2):158-69. PubMed ID: 7664757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cultured neurons contain a variety of microtubule-associated proteins.
    Peng I; Binder LI; Black MM
    Brain Res; 1985 Dec; 361(1-2):200-11. PubMed ID: 2867809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microheterogeneity of microtubule-associated proteins, MAP-1 and MAP-2, and differential phosphorylation of individual subcomponents.
    Herrmann H; Dalton JM; Wiche G
    J Biol Chem; 1985 May; 260(9):5797-803. PubMed ID: 2985613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MAP 0, a 400-kDa microtubule-associated protein unique to teleost fish.
    Modig C; Rutberg M; Detrich HW; Billger M; Strömberg E; Wallin M
    Cell Motil Cytoskeleton; 1997; 38(3):258-69. PubMed ID: 9384216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding specificities of purified porcine brain alpha- and beta-tubulin subunits and of microtubule-associated proteins 1 and 2 examined by electron microscopy and solid-phase binding assays.
    Furtner R; Wiche G
    Eur J Cell Biol; 1987 Dec; 45(1):1-8. PubMed ID: 3443106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural differences of microtubule associated proteins from brain probed by tryptic peptide mapping.
    Tanabe K; Sato C; Kobayashi T; Takahashi T
    J Biochem; 1986 Jul; 100(1):59-65. PubMed ID: 3759938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of microtubule-associated protein MAP1B: phosphorylation state, light chains, and binding to microtubules.
    Pedrotti B; Ulloa L; Avila J; Islam K
    Biochemistry; 1996 Mar; 35(9):3016-23. PubMed ID: 8608140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple method to obtain brain microtubule protein poor in microtubule-associated proteins.
    Vater W; Böhm KJ; Unger E
    Acta Histochem Suppl; 1986; 33():123-9. PubMed ID: 3090619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel use for coomassie brilliant blue (R250) in protein gel-drying procedure and assessing the electro-transferring efficiency.
    Dibas AI; Yorio T
    Biochem Biophys Res Commun; 1996 Mar; 220(3):929-32. PubMed ID: 8607869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of microtubule-associated proteins isolated from bovine adrenal gland.
    Kotani S; Murofushi H; Maekawa S; Sato C; Sakai H
    Eur J Biochem; 1986 Apr; 156(1):23-9. PubMed ID: 3956507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-related modifications of MAP-2.
    Kosik KS; Bakalis S; Galibert L; Selkoe DJ; Duffy LK
    Ann N Y Acad Sci; 1986; 466():420-2. PubMed ID: 2873778
    [No Abstract]   [Full Text] [Related]  

  • 19. Molecular aspects of MAP-1 and MAP-2: microheterogeneity, in vitro localization and distribution in neuronal and nonneuronal cells.
    Wiche G; Herrmann H; Dalton JM; Foisner R; Leichtfried FE; Lassmann H; Koszka C; Briones E
    Ann N Y Acad Sci; 1986; 466():180-98. PubMed ID: 3460414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of microtubule-associated protein 2 from mouse brain and its localization in the cerebellar cortex.
    Niinobe M; Maeda N; Ino H; Mikoshiba K
    J Neurochem; 1988 Oct; 51(4):1132-9. PubMed ID: 3418347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.