These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 28732585)

  • 1. Obtaining a high activity subtilisin preparation by controlled thermal stress in n-octane.
    Prasad S; Roy I
    Anal Biochem; 2017 Oct; 534():86-90. PubMed ID: 28732585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and characterization of cross-linked enzyme aggregates (CLEA) of subtilisin for controlled release applications.
    Sangeetha K; Abraham TE
    Int J Biol Macromol; 2008 Oct; 43(3):314-9. PubMed ID: 18662715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydration of enzyme in nonaqueous media is consistent with solvent dependence of its activity.
    Yang L; Dordick JS; Garde S
    Biophys J; 2004 Aug; 87(2):812-21. PubMed ID: 15298890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High initial activity but low storage stability observed for several preparations of subtilisin Carslberg suspended in organic solvents.
    Martínez SG; Alvira E; Cordero LV; Ferrer A; Montañés-Clemente I; Barletta G
    Biotechnol Prog; 2002; 18(6):1462-6. PubMed ID: 12467488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of crown ethers on structure, stability, activity, and enantioselectivity of subtilisin Carlsberg in organic solvents.
    Santos AM; Vidal M; Pacheco Y; Frontera J; Báez C; Ornellas O; Barletta G; Griebenow K
    Biotechnol Bioeng; 2001 Aug; 74(4):295-308. PubMed ID: 11410854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic catalysis in nonaqueous solvents.
    Zaks A; Klibanov AM
    J Biol Chem; 1988 Mar; 263(7):3194-201. PubMed ID: 3277967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrophobic ion pairing as a method for enhancing structure and activity of lyophilized subtilisin BPN' suspended in isooctane.
    Kendrick BS; Meyer JD; Matsuura JE; Carpenter JF; Manning MC
    Arch Biochem Biophys; 1997 Nov; 347(1):113-8. PubMed ID: 9344471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of conformational flexibility of enzymes in the discrimination between amino acid and ester substrates for the subtilisin-catalyzed reaction in organic solvents.
    Watanabe K; Yoshida T; Ueji S
    Bioorg Chem; 2004 Dec; 32(6):504-15. PubMed ID: 15530991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of the mode of enzyme preparation on enzymatic enantioselectivity in organic solvents and its temperature dependence.
    Noritomi H; Almarsson O; Barletta GL; Klibanov AM
    Biotechnol Bioeng; 1996 Jul; 51(1):95-9. PubMed ID: 18627092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Encapsulation of crosslinked subtilisin microcrystals in hydrogel beads for controlled release applications.
    Simi CK; Emilia Abraham T
    Eur J Pharm Sci; 2007 Sep; 32(1):17-23. PubMed ID: 17624742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural determinants of ligand imprinting: a molecular dynamics simulation study of subtilisin in aqueous and apolar solvents.
    Lousa D; Baptista AM; Soares CM
    Protein Sci; 2011 Feb; 20(2):379-86. PubMed ID: 21280129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement of low-temperature caseinolytic activity of a thermophilic subtilase by directed evolution and site-directed mutagenesis.
    Zhong CQ; Song S; Fang N; Liang X; Zhu H; Tang XF; Tang B
    Biotechnol Bioeng; 2009 Dec; 104(5):862-70. PubMed ID: 19609954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of two immobilized lipases activity and stability to low temperatures in organic solvents under ultrasound-assisted irradiation.
    Batistella L; Ustra MK; Richetti A; Pergher SB; Treichel H; Oliveira JV; Lerin L; de Oliveira D
    Bioprocess Biosyst Eng; 2012 Mar; 35(3):351-8. PubMed ID: 21779888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Salt hydrates for in situ water activity control have acid-base effects on enzymes in nonaqueous media.
    Fontes N; Harper N; Halling PJ; Barreiros S
    Biotechnol Bioeng; 2003 Jun; 82(7):802-8. PubMed ID: 12701146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Examining structure-activity correlations of some high activity enzyme preparations for low water media.
    Solanki K; Gupta MN; Halling PJ
    Bioresour Technol; 2012 Jul; 115():147-51. PubMed ID: 22248800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering a substrate-specific cold-adapted subtilisin.
    Tindbaek N; Svendsen A; Oestergaard PR; Draborg H
    Protein Eng Des Sel; 2004 Feb; 17(2):149-56. PubMed ID: 15047911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calorimetric studies on solid alpha-chymotrypsin preparations in air and in organic solvents.
    Oste-Triantafyllou A; Wehtje E; Adlercreutz P; Mattiasson B
    Biochim Biophys Acta; 1996 Jun; 1295(1):110-8. PubMed ID: 8679668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An extremely thermotolerant, alkaliphilic subtilisin-like protease from hyperthermophilic Bacillus sp. MLA64.
    Lagzian M; Asoodeh A
    Int J Biol Macromol; 2012 Dec; 51(5):960-7. PubMed ID: 22926101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aqueous solubility, Henry's law constants and air/water partition coefficients of n-octane and two halogenated octanes.
    Sarraute S; Delepine H; Costa Gomes MF; Majer V
    Chemosphere; 2004 Dec; 57(10):1543-51. PubMed ID: 15519399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perturbation response scanning specifies key regions in subtilisin serine protease for both function and stability.
    Abdizadeh H; Guven G; Atilgan AR; Atilgan C
    J Enzyme Inhib Med Chem; 2015 Dec; 30(6):867-73. PubMed ID: 25643757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.