These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 28732763)

  • 1. Post-exercise cortical depression following repetitive passive finger movement.
    Otsuka R; Sasaki R; Tsuiki S; Kojima S; Onishi H
    Neurosci Lett; 2017 Aug; 656():89-93. PubMed ID: 28732763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of primary motor cortex excitability by repetitive passive finger movement frequency.
    Sasaki R; Nakagawa M; Tsuiki S; Miyaguchi S; Kojima S; Saito K; Inukai Y; Masaki M; Otsuru N; Onishi H
    Neuroscience; 2017 Aug; 357():232-240. PubMed ID: 28627417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corticomotor excitability induced by anodal transcranial direct current stimulation with and without non-exhaustive movement.
    Miyaguchi S; Onishi H; Kojima S; Sugawara K; Tsubaki A; Kirimoto H; Tamaki H; Yamamoto N
    Brain Res; 2013 Sep; 1529():83-91. PubMed ID: 23891715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural mechanism of selective finger movement independent of synergistic movement.
    Aoyama T; Kaneko F; Ohashi Y; Kohno Y
    Exp Brain Res; 2019 Dec; 237(12):3485-3492. PubMed ID: 31741000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corticospinal excitability following repetitive voluntary movement.
    Ishikawa N; Miyao R; Tsuiki S; Sasaki R; Miyaguchi S; Onishi H
    J Clin Neurosci; 2018 Nov; 57():93-98. PubMed ID: 30145084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Passive Finger Movement on Cortical Excitability.
    Nakagawa M; Sasaki R; Tsuiki S; Miyaguchi S; Kojima S; Saito K; Inukai Y; Onishi H
    Front Hum Neurosci; 2017; 11():216. PubMed ID: 28515687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Somatosensory Inputs Induced by Passive Movement Facilitate Primary Motor Cortex Excitability Depending on the Interstimulus Interval, Movement Velocity, and Joint Angle.
    Sasaki R; Tsuiki S; Miyaguchi S; Kojima S; Saito K; Inukai Y; Otsuru N; Onishi H
    Neuroscience; 2018 Aug; 386():194-204. PubMed ID: 30008398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-exercise depression in corticomotor excitability after dynamic movement: a general property of fatiguing and non-fatiguing exercise.
    Teo WP; Rodrigues JP; Mastaglia FL; Thickbroom GW
    Exp Brain Res; 2012 Jan; 216(1):41-9. PubMed ID: 22038716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decrease in short-latency afferent inhibition during corticomotor postexercise depression following repetitive finger movement.
    Miyaguchi S; Kojima S; Sasaki R; Kotan S; Kirimoto H; Tamaki H; Onishi H
    Brain Behav; 2017 Jul; 7(7):e00744. PubMed ID: 28729946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in corticomotor excitability and inhibition after exercise are influenced by hand dominance and motor demand.
    Teo WP; Rodrigues JP; Mastaglia FL; Thickbroom GW
    Neuroscience; 2012 May; 210():110-7. PubMed ID: 22450228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-lasting depression of motor-evoked potentials to transcranial magnetic stimulation following exercise.
    Zanette G; Bonato C; Polo A; Tinazzi M; Manganotti P; Fiaschi A
    Exp Brain Res; 1995; 107(1):80-6. PubMed ID: 8751065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinematically specific interhemispheric inhibition operating in the process of generation of a voluntary movement.
    Duque J; Mazzocchio R; Dambrosia J; Murase N; Olivier E; Cohen LG
    Cereb Cortex; 2005 May; 15(5):588-93. PubMed ID: 15342437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortical output modulation after rapid repetitive movements.
    Bonato C; Zanette G; Polo A; Bongiovanni G; Manganotti P; Tinazzi M; Teatini F; Fiaschi A
    Ital J Neurol Sci; 1994 Dec; 15(9):489-94. PubMed ID: 7721552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Whole-hand water flow stimulation increases motor cortical excitability: a study of transcranial magnetic stimulation and movement-related cortical potentials.
    Sato D; Yamashiro K; Onishi H; Yasuhiro B; Shimoyama Y; Maruyama A
    J Neurophysiol; 2015 Feb; 113(3):822-33. PubMed ID: 25376780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitability changes in the ipsilateral primary motor cortex during rhythmic contraction of finger muscles.
    Uehara K; Morishita T; Funase K
    Neurosci Lett; 2011 Jan; 488(1):22-5. PubMed ID: 21056628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facilitation of cortically evoked potentials with motor imagery during post-exercise depression of corticospinal excitability.
    Pitcher JB; Robertson AL; Clover EC; Jaberzadeh S
    Exp Brain Res; 2005 Jan; 160(4):409-17. PubMed ID: 15502993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protracted exercise without overt neuromuscular fatigue influences cortical excitability.
    Crupi D; Cruciata G; Moisello C; Green PA; Naro A; Ricciardi L; Perfetti B; Bove M; Avanzino L; Di Rocco A; Quartarone A; Ghilardi MF
    J Mot Behav; 2013; 45(2):127-38. PubMed ID: 23488595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delayed facilitation of motor cortical excitability following repetitive finger movements.
    Caramia MD; Scalise A; Gordon R; Michalewski HJ; Starr A
    Clin Neurophysiol; 2000 Sep; 111(9):1654-60. PubMed ID: 10964079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal aspects of passive movement-related corticomotor inhibition.
    Edwards DJ; Thickbroom GW; Byrnes ML; Ghosh S; Mastaglia FL
    Hum Mov Sci; 2004 Oct; 23(3-4):379-87. PubMed ID: 15541524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical and magnetic repetitive transcranial stimulation of the primary motor cortex in healthy subjects.
    Gilio F; Iacovelli E; Frasca V; Gabriele M; Giacomelli E; De Lena C; Cipriani AM; Inghilleri M
    Neurosci Lett; 2009 May; 455(1):1-3. PubMed ID: 19429094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.