These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 28732811)

  • 1. Kaurenoic acid activates TGF-β signaling.
    Kim KH; Han JW; Jung SK; Park BJ; Han CW; Joo M
    Phytomedicine; 2017 Aug; 32():8-14. PubMed ID: 28732811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydroxysafflor yellow A inhibits TGF-β1-induced activation of human fetal lung fibroblasts in vitro.
    Pan R; Zhang Y; Zang B; Tan L; Jin M
    J Pharm Pharmacol; 2016 Oct; 68(10):1320-30. PubMed ID: 27457091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The inhibitory effect of ginsan on TGF-β mediated fibrotic process.
    Ahn JY; Kim MH; Lim MJ; Park S; Lee SL; Yun YS; Song JY
    J Cell Physiol; 2011 May; 226(5):1241-7. PubMed ID: 20945375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of progesterone on Smad signaling and TGF-β/Smad-regulated genes in lung epithelial cells.
    Kunzmann S; Ottensmeier B; Speer CP; Fehrholz M
    PLoS One; 2018; 13(7):e0200661. PubMed ID: 30001393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The transforming growth factor-beta/SMAD signaling pathway is present and functional in human mesangial cells.
    Poncelet AC; de Caestecker MP; Schnaper HW
    Kidney Int; 1999 Oct; 56(4):1354-65. PubMed ID: 10504488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucocorticoids recruit Tgfbr3 and Smad1 to shift transforming growth factor-β signaling from the Tgfbr1/Smad2/3 axis to the Acvrl1/Smad1 axis in lung fibroblasts.
    Schwartze JT; Becker S; Sakkas E; Wujak ŁA; Niess G; Usemann J; Reichenberger F; Herold S; Vadász I; Mayer K; Seeger W; Morty RE
    J Biol Chem; 2014 Feb; 289(6):3262-75. PubMed ID: 24347165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4.
    Nakao A; Imamura T; Souchelnytskyi S; Kawabata M; Ishisaki A; Oeda E; Tamaki K; Hanai J; Heldin CH; Miyazono K; ten Dijke P
    EMBO J; 1997 Sep; 16(17):5353-62. PubMed ID: 9311995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human eosinophils have an intact Smad signaling pathway leading to a major transforming growth factor-beta target gene expression.
    Kanzaki M; Shibagaki N; Hatsushika K; Mitsui H; Inozume T; Okamoto A; Dobashi Y; Ogawa H; Shimada S; Nakao A
    Int Arch Allergy Immunol; 2007; 142(4):309-17. PubMed ID: 17135762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Therapeutic effect of ent-kaur-16-en-19-oic acid on neutrophilic lung inflammation and sepsis is mediated by Nrf2.
    Kim KH; Sadikot RT; Joo M
    Biochem Biophys Res Commun; 2016 Jun; 474(3):534-540. PubMed ID: 27133718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide induces TIMP-1 expression by activating the transforming growth factor beta-Smad signaling pathway.
    Akool el-S; Doller A; Müller R; Gutwein P; Xin C; Huwiler A; Pfeilschifter J; Eberhardt W
    J Biol Chem; 2005 Nov; 280(47):39403-16. PubMed ID: 16183640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of ALK5/Smad2/3 and MEK1/ERK Signaling in Transforming Growth Factor Beta 1-modulated Growth, Collagen Turnover, and Differentiation of Stem Cells from Apical Papilla of Human Tooth.
    Chang HH; Chang MC; Wu IH; Huang GF; Huang WL; Wang YL; Lee SY; Yeh CY; Guo MK; Chan CP; Hsien HC; Jeng JH
    J Endod; 2015 Aug; 41(8):1272-80. PubMed ID: 26001858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aberrant TGF-β1 signaling contributes to the development of primary biliary cirrhosis in murine model.
    Liu B; Zhang X; Zhang FC; Zong JB; Zhang W; Zhao Y
    World J Gastroenterol; 2013 Sep; 19(35):5828-36. PubMed ID: 24124327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ent-kaur-16-en-19-oic Acid, isolated from the roots of Aralia continentalis, induces activation of Nrf2.
    Lyu JH; Lee GS; Kim KH; Kim HW; Cho SI; Jeong SI; Kim HJ; Ju YS; Kim HK; Sadikot RT; Christman JW; Oh SR; Lee HK; Ahn KS; Joo M
    J Ethnopharmacol; 2011 Oct; 137(3):1442-9. PubMed ID: 21884778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cooperation between GATA4 and TGF-beta signaling regulates intestinal epithelial gene expression.
    Belaguli NS; Zhang M; Rigi M; Aftab M; Berger DH
    Am J Physiol Gastrointest Liver Physiol; 2007 Jun; 292(6):G1520-33. PubMed ID: 17290010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypoxia Suppresses TGF-B1-Induced Cardiac Myocyte Myofibroblast Transformation by Inhibiting Smad2/3 and Rhoa Signaling Pathways.
    Yan Z; Shen D; Liao J; Zhang Y; Chen Y; Shi G; Gao F
    Cell Physiol Biochem; 2018; 45(1):250-257. PubMed ID: 29357322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sphingosylphosphorylcholine induces differentiation of human mesenchymal stem cells into smooth-muscle-like cells through a TGF-beta-dependent mechanism.
    Jeon ES; Moon HJ; Lee MJ; Song HY; Kim YM; Bae YC; Jung JS; Kim JH
    J Cell Sci; 2006 Dec; 119(Pt 23):4994-5005. PubMed ID: 17105765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. C18 ORF1, a novel negative regulator of transforming growth factor-β signaling.
    Nakano N; Maeyama K; Sakata N; Itoh F; Akatsu R; Nakata M; Katsu Y; Ikeno S; Togawa Y; Vo Nguyen TT; Watanabe Y; Kato M; Itoh S
    J Biol Chem; 2014 May; 289(18):12680-92. PubMed ID: 24627487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting endogenous transforming growth factor beta receptor signaling in SMAD4-deficient human pancreatic carcinoma cells inhibits their invasive phenotype1.
    Subramanian G; Schwarz RE; Higgins L; McEnroe G; Chakravarty S; Dugar S; Reiss M
    Cancer Res; 2004 Aug; 64(15):5200-11. PubMed ID: 15289325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pluripotency gene expression and growth control in cultures of peripheral blood monocytes during their conversion into programmable cells of monocytic origin (PCMO): evidence for a regulatory role of autocrine activin and TGF-β.
    Ungefroren H; Hyder A; Hinz H; Groth S; Lange H; El-Sayed KM; Ehnert S; Nüssler AK; Fändrich F; Gieseler F
    PLoS One; 2015; 10(2):e0118097. PubMed ID: 25707005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Caveolin-2 is a negative regulator of anti-proliferative function and signaling of transforming growth factor-β in endothelial cells.
    Xie L; Vo-Ransdell C; Abel B; Willoughby C; Jang S; Sowa G
    Am J Physiol Cell Physiol; 2011 Nov; 301(5):C1161-74. PubMed ID: 21832243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.